Powered by OpenAIRE graph

CENTRO TECNICO DE SEAT SA

Country: Spain

CENTRO TECNICO DE SEAT SA

4 Projects, page 1 of 1
  • Funder: European Commission Project Code: 263167
    more_vert
  • Funder: European Commission Project Code: 688038
    Overall Budget: 7,999,880 EURFunder Contribution: 7,999,880 EUR

    The objective of the BIG IoT project is to ignite really vibrant Internet of Things (IoT) ecosystems. We will achieve this by bridging the current interoperability gap between the vertically integrated IoT platforms and by creating marketplaces for IoT services and applications. Despite various research and innovation projects working on the Internet of Things, no broadly accepted professional IoT ecosystems exist. The reason for that are high market entry barriers for developers and service providers due to a fragmentation of IoT platforms. The goal of this project is to overcome these hurdles by Bridging the Interoperability Gap of the IoT and by creating marketplaces for service and application providers as well as platform operators. We will address the interoperability gap by defining a generic, unified Web API for smart object platforms, called the BIG IoT API. The establishment of a marketplace where platform, application, and service providers can monetize their assets will introduce an incentive to grant access to formerly closed systems and lower market entry barriers for developers. The BIG IoT consortium is well suited to reach the outlined goals, as it comprises all roles of an IoT ecosystem: resource providers (e.g., SIEMENS, SEAT), service and application developers (e.g., VODAFONE, VMZ), marketplace providers (e.g., ATOS), platform providers (e.g., BOSCH, CSI, ECONAIS), as well as end users connected through the public private partnerships of WAG and CSI or the user-focused information services that VMZ provides for the city of Berlin. The major industry players cover multiple domains, including mobility, automotive, telecommunications, and IT services. Four university departments will help to transfer the state of the art into the state of the practice and solve the open research challenges. This consortium will mobilise the necessary critical mass at European level to achieve the goals and to reach the ireach the impacts set out in this project.

    more_vert
  • Funder: European Commission Project Code: 666157
    Overall Budget: 6,852,300 EURFunder Contribution: 6,852,300 EUR

    ALISE is a pan European collaboration focused on the development and commercial scale-up of new materials and on the understanding of the electrochemical processes involved in the lithium sulphur technology. It aims to create impact by developing innovative battery technology capable of fulfilling the expected and characteristics from European Automotive Industry needs, European Materials Roadmap, Social factors from vehicle consumers and future competitiveness trends and European Companies positioning. The project is focused to achieve 500 Wh/Kg stable LiS cell. The project involves dedicated durability, testing and LCA activities that will make sure the safety and adequate cyclability of battery being developed and available at competitive cost. Initial materials research will be scaled up during the project so that pilot scale quantities of the new materials will be introduced into the novel cell designs thus giving the following advancements over the current state of the art. The project approach will bring real breakthrough regarding new components, cell integration and architecture associated. New materials will be developed and optimized regarding anode, cathode, electrolyte and separator. Complete panels of specific tools and modelling associated will be developed from the unit cell to the batteries pack. Activities are focused on the elaboration of new materials and processes at TRL4. Demonstration of the lithium sulphur technology will be until batteries pack levels with validation onboard. Validation of prototype (17 kWh) with its driving range corresponding (100 km) will be done on circuit. ALISE is more than a linear bottom-up approach from materials to cell. ALISE shows strong resources to achieve a stable unit cell, with a supplementary top-down approach from the final application to the optimization of the unit cell.

    more_vert
  • Funder: European Commission Project Code: 285268
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.