Powered by OpenAIRE graph

PRODRIVE TECHNOLOGIES INNOVATION SERVICES B.V.

Country: Netherlands

PRODRIVE TECHNOLOGIES INNOVATION SERVICES B.V.

7 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101140226
    Overall Budget: 32,600,400 EURFunder Contribution: 10,288,900 EUR

    Cynergy4MIE is a visionary project poised to revolutionize Europe's industrial landscape by bridging the gap between foundational technology layers, cross-sectional technologies, and key application areas. The project addresses the pressing need for efficient resource utilization and synergy creation across ecosystems. By actively managing requirements from various key application areas, Cynergy4MIE aims to steer developments in foundational technology layers and cross-sectional technologies, enabling unparalleled collaboration and resource optimization. This approach promises faster time-to-market, efficient resource utilization, and enhanced technological exchange between key application areas. Cynergy4MIE's strategy aligns with the EU's agenda and emphasizes urgency, resilience, technological partnerships, and cross-domain integration to champion European competitiveness. The project's long-term impact rests on embracing urgency, fostering competitive resilience, strengthening technological partnerships, harnessing ecosystem synergies, promoting cross-domain integration, advancing AI competence, prioritizing sustainability, enhancing productivity, and ensuring user-centric digitalization while forming strategic alliances. Cynergy4MIE envisions a future where emergent cyber-physical systems serve human-centric needs, drive domain convergence, and secure Europe's position as a global technology leader.

    more_vert
  • Funder: European Commission Project Code: 101096387
    Overall Budget: 73,297,000 EURFunder Contribution: 18,267,400 EUR

    The overarching goal of PowerizeD is to develop breakthrough technologies of digitalized and intelligent power electronics, in order to enable sustainable and resilient energy generation, transmission and applications. PowerizeD enhances the level of mechanical and electrical integration of new driver circuits into power electronics and allows for the first time common optimization of all power switch functionalities. Regarding data sharing along the value chain, PowerizeD drives the novel approach of Federated Learning as a methodical approach to an intrinsically encrypted transfer of confidential and proprietary data. Also new is the usage of detailed electrical physical models in digital twins of real time digitally monitored and controlled power electronic devices. Unlike other projects focusing on competence and technology with limited effort on demonstration, this project will start from vital societal needs, by identifying and analyzing the key generic technology challenges from broad application scopes. Major effort will be spent on cross-domain research and innovation. The developed technologies will be demonstrated and evaluated via a large number of universally applicable results. To realize this ambition, a large project consortium will incorporate the needed competencies and resources along the whole value chain. 24 Large Entities, 19 Small Medium Enterprises and 22 research partners from 12 EU countries – representing the entire value chain from materials to “system of systems” – strive to demonstrate the applicability of these innovative approaches to multiple industrial domains. Among the concrete objectives are a 25% reduction or power losses, a device and system lifetime increase of 30%, a chip size reduction of at least 10% and a shortening of the design time by 50%. By this, PowerizeD addresses the three megatrends Independence, Sustainability and Digitalization, thereby opening pathways to massive economic and societal benefits for the EU.

    more_vert
  • Funder: European Commission Project Code: 101139769
    Overall Budget: 34,764,800 EURFunder Contribution: 11,274,500 EUR

    We are surrounded by a variety of more-or-less intelligent technical devices, designed to serve you us or others. Applications onin your mobile phones, wrist-worn health sensors on your wrists, autonomous vacuum cleaners, robots on the factory floor and increasingly autonomous cars – all pledge to ease your tasks and keep usyou safe and healthy. SThe seamless interplay with these devices gets gainsmore importane as these devices proliferate and grow in t with the increased autonomy and pervasive presence of the devices. We expect continuously available support fromin the services they provide − yet we want them to disappear unobtrusively in the background when not needed. In order to provide support in a collaborative environment with human, physical and digital players, the technology needs to be equipped with senses to grasp human presence, their mental and physical state, their activities and their intentions. This is required to ensure human safety, safeguard their health, and allow for natural interaction. This project intends to improve sensing of human presence, behaviour and health in a collaborative or common environment by means of multi-sensor systems.

    more_vert
  • Funder: European Commission Project Code: 101194250
    Overall Budget: 58,183,100 EURFunder Contribution: 16,526,900 EUR

    HiPower 5.0 is driven by the challenges and ambitions addressed in the Green Deal and in the Chips Act, to develop new power electronics solutions to ensure Green Deal targets and to foster a resilient and leading edge all-European Value Chain, for tomorrow’s mobility solutions. Therefore, HiPower 5.0 aims for developing highly integrated eDrive components for the automotive and maritime domain using leading edge wide bandgap semiconductors and power electronics integration technologies. This includes the development of new GaN wafer materials with superior performance, first time 850 V monolithically integrated bidirectional GaN switches, enabling new topologies and unprecedented efficiency levels of 99%, as well as 1200 V GaN switches fitting the needs of 800 V battery electric vehicles. When developing these solutions, a resource-efficient and reliable design is considered to minimize CO2 footprint and extent the lifetime of power electronics components. Firstly, multi-physics simulation with its ability to model the complex interactions between electrical, thermal, electro-magnetic, and mechanical phenomena will be used. By simulating these interactions, the system design can be optimized while performances can be predicted under various operating conditions, reducing the need for prototyping, and cutting both time and costs of development. Secondly, new ageing models and prognostics concepts will be developed to finally enable an according evaluation of the set targets of the single applications. Supported by innovations in power electronics control and cooling the lifetime and reliability will be further enhanced. To achieve these targets, the HiPower 5.0 consortium is composed along the whole value chain, starting from the GaN wafer and chips development, up to automotive and maritime Tier1/OEMs. This is accompanied by leading European universities and research organizations, guaranteeing a significant economic and scientific impact of the proposed work.

    more_vert
  • Funder: European Commission Project Code: 101096772
    Overall Budget: 94,640,400 EURFunder Contribution: 21,834,500 EUR

    14ACMOS is about enabling manufacture of 14A Semiconductor technology. It addresses the 4 key pillars in IC technology development for manufacture; Lithography, Metrology, Mask Infrastructure and Process technology. Carl ZEISS, Trumpf and ASML are the main parties to push the lithography solutions to 14A. Between Carl ZEISS, Fraunhofer, RWTH, UW and TNO further understanding of optics life time and plasma physics is pursued in optimizing optics transmission and lifetime. Nova, BRT, ILT and PTB address measurement sensitivity enhancement of X-ray and optical based methodologies to meet the 14A requirements. Imec, TNO, PTB, UPB and RWTH will combine and tune metrology techniques specifically for the assessment of EUV reticle degradation. On throughput and resolution enhancement Bruker, EXC, PTB and AMIL will work on X-ray sources and AMIL, ICT and NFI on e-beam and SPM platforms for in-line metrology. On the reduction of Total Measurement Uncertainty, Prodrive and AMIL cover the development of an ultra-high precision wafer stage and NVIDIA, AMIL and Prodrive the development of a next generation image processing system. In Mask Infrastructure there are FHG (IISB), ASML, Carl Zeiss covering the creation of a simulation based mask repair strategy and with Carl ZEISS, ASML, PI and UPB HW/SW and process technology for particle removal is created and repair durability is covered with Carl ZEISS, ASML, Suss and UPB. Process technology covers the creation of patterning solutions with the involvement of imec and TEL. On active device selection there will be imec, Cadence, IBS, JSR, Recif and TEL with THERMO enabling advanced TEM characterization. Middle Of Line and Back End Of Line solution development is with imec, TEL, Solmates and Coventor for process modules and Cadence the interface with the design community. On Sustainable Semiconductor Technology and Systems there are imec, Recif and ThermoFisher covering sustainable material and processing alternatives.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.