Tescom Corporation UK
Tescom Corporation UK
2 Projects, page 1 of 1
assignment_turned_in Project2006 - 2007Partners:Coates Lorilleux Ltd, QMUL, Hydrogen Solar Ltd, Tescom Corporation UK, Faraday Packaging Partnership +14 partnersCoates Lorilleux Ltd,QMUL,Hydrogen Solar Ltd,Tescom Corporation UK,Faraday Packaging Partnership,Thermo Fisher (To be removed 1),SRI INTERNATIONAL,Hydrogen Solar (United Kingdom),SRI,Coates Lorilleux Ltd,AMR Ltd,Thermo Electron Corporation,Tescom Corporation UK,Hydrogen Solar Ltd,AMR Ltd,Malvern Instruments Ltd,Spectris (United Kingdom),Malvern Inst,Faraday: INSIGHT (Chemical throughput)Funder: UK Research and Innovation Project Code: EP/D038499/1Funder Contribution: 886,013 GBPThe current advancement of technology very much depends upon the discovery of new materials. It has been known for some time that combinations of elements not involving carbon (called inorganic materials) can have important uses in areas from electronics, computing and UV protection in products, to harnessing energy from the sun. In particular, when inorganic particles are very small, typically made up of a few hundred atoms (called nanomaterials), they can have unusual and exciting properties. The discovery of such nanomaterials is very much hampered by our inability to make these materials fast enough and then to be able to test them adequately for their properties.The proposed research seeks to develop a new, faster way of making and discovering inorganic nanomaterials that can absorb sunlight (as an free energy source), and use this energy to split water into its constituents, hydrogen and oxygen (in a process known as photocatalysis). The hydrogen can then be used for powering cars or devices of the future. Such a process is important to sustain the energy requirements of mankind on this earth when our fossil fuels (e.g. oil) are exhausted.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::51677ee3d456cd7710081f05e707f3fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::51677ee3d456cd7710081f05e707f3fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2010Partners:SRI INTERNATIONAL, SRI, Coates Lorilleux Ltd, Malvern Instruments Ltd, Hydrogen Solar Ltd +15 partnersSRI INTERNATIONAL,SRI,Coates Lorilleux Ltd,Malvern Instruments Ltd,Hydrogen Solar Ltd,Spectris (United Kingdom),AMR Ltd,Hydrogen Solar Ltd,AMR Ltd,Coates Lorilleux Ltd,Tescom Corporation UK,Hydrogen Solar (United Kingdom),Faraday Packaging Partnership,Thermo Fisher (To be removed 1),University of Leeds,Tescom Corporation UK,University of Leeds,Thermo Electron Corporation,Malvern Inst,Faraday: INSIGHT (Chemical throughput)Funder: UK Research and Innovation Project Code: EP/D038391/1Funder Contribution: 141,615 GBPThe current advancement of technology very much depends upon the discovery of new materials. It has been known for some time that combinations of elements not largely involving carbon (called inorganic materials) can have important uses in areas from electronics, computing, UV protection in products, to harnessing energy from the sun. In particular, when inorganic particles are very small, typically made of a few hundred atoms (called nanomaterials), they become can have unusual and exciting properties. The discovery of such nanomaterials very much is hampered by our inability to make these materials fast enough and then to be able to test them adequately for their properties.The proposed research seeks to develop a new way of making and discovering inorganic nanomaterials using a very fast approach. This project is seeking to discovery better nanomaterials, which can absorb the suns rays (as an free energy source), and use this energy to split water into its constituents, hydrogen and oxygen (in a process known as photocatalysis). The hydrogen can then be used for powering cars or devices of the future. Such a process is important to sustain the energy requirements of mankind on this earth when our fossil fuels (e.g. oil) are exhausted.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1334fff1e9dc06e213862a204d8f5563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1334fff1e9dc06e213862a204d8f5563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu