Forth Engineering Ltd
Forth Engineering Ltd
3 Projects, page 1 of 1
assignment_turned_in Project2017 - 2022Partners:Nuclear AMRC, The University of Texas at Austin, AWE plc, Forth Engineering Ltd, NDA +76 partnersNuclear AMRC,The University of Texas at Austin,AWE plc,Forth Engineering Ltd,NDA,Innotec Ltd,Shadow Robot Company Ltd,Imitec Ltd,BP British Petroleum,Beihang University (BUAA),ABB (Switzerland),OC Robotics,Italian Institute of Technology,Sprint Robotics,OC Robotics,Virtual Engineering Centre (VEC),University of Manchester,ABB Ltd,Longenecker and Associates,Rolls-Royce (United Kingdom),The Manufacturing Technology Centre Ltd,ABB Group,Fusion for Energy,Nuvia Limited,Japan Atomic Energy Agency (JAEA),Sellafield Ltd,Japan Atomic Energy Agency,Rolls-Royce Plc (UK),Longenecker and Associates,EDF Energy (United Kingdom),UK Trade and Investment,University of Florida,Department for International Trade,EDF Energy Plc (UK),Valtegra,National Nuclear Laboratory (NNL),UF,Festo Ltd,Createc Ltd,Valtegra,The Shadow Robot Company,Imitec Ltd,Moog Controls Ltd,Gassco,Oxford Investment Opportunity Network,Nuclear Decommissioning Authority,Forth Engineering Ltd,Oxford Investment Opportunity Network,The University of Manchester,Chinese Academy of Sciences,British Energy Generation Ltd,Italian Institute of Technology,CAS,University of Salford,Fusion For Energy,NUVIA LIMITED,AWE,Nuclear AMRC,NNL,Uniper Technologies Ltd.,Beihang University,Sprint Robotics,Uniper Technologies Ltd.,ITER - International Fusion Energy Org,Nuclear Decommissioning Authority,Sellafield Ltd,Tharsus,Virtual Engineering Centre (VEC),Chinese Academy of Science,Innotec Ltd,Tharsus,James Fisher Nuclear Limited,MTC,Gassco,ITER - International Fusion Energy Org,Festo Ltd,Rolls-Royce (United Kingdom),Moog Controls Ltd,Createc Ltd,James Fisher Nuclear Limited,BP (International)Funder: UK Research and Innovation Project Code: EP/R026084/1Funder Contribution: 12,807,900 GBPThe nuclear industry has some of the most extreme environments in the world, with radiation levels and other hazards frequently restricting human access to facilities. Even when human entry is possible, the risks can be significant and very low levels of productivity. To date, robotic systems have had limited impact on the nuclear industry, but it is clear that they offer considerable opportunities for improved productivity and significantly reduced human risk. The nuclear industry has a vast array of highly complex and diverse challenges that span the entire industry: decommissioning and waste management, Plant Life Extension (PLEX), Nuclear New Build (NNB), small modular reactors (SMRs) and fusion. Whilst the challenges across the nuclear industry are varied, they share many similarities that relate to the extreme conditions that are present. Vitally these similarities also translate across into other environments, such as space, oil and gas and mining, all of which, for example, have challenges associated with radiation (high energy cosmic rays in space and the presence of naturally occurring radioactive materials (NORM) in mining and oil and gas). Major hazards associated with the nuclear industry include radiation; storage media (for example water, air, vacuum); lack of utilities (such as lighting, power or communications); restricted access; unstructured environments. These hazards mean that some challenges are currently intractable in the absence of solutions that will rely on future capabilities in Robotics and Artificial Intelligence (RAI). Reliable robotic systems are not just essential for future operations in the nuclear industry, but they also offer the potential to transform the industry globally. In decommissioning, robots will be required to characterise facilities (e.g. map dose rates, generate topographical maps and identify materials), inspect vessels and infrastructure, move, manipulate, cut, sort and segregate waste and assist operations staff. To support the life extension of existing nuclear power plants, robotic systems will be required to inspect and assess the integrity and condition of equipment and facilities and might even be used to implement urgent repairs in hard to reach areas of the plant. Similar systems will be required in NNB, fusion reactors and SMRs. Furthermore, it is essential that past mistakes in the design of nuclear facilities, which makes the deployment of robotic systems highly challenging, do not perpetuate into future builds. Even newly constructed facilities such as CERN, which now has many areas that are inaccessible to humans because of high radioactive dose rates, has been designed for human, rather than robotic intervention. Another major challenge that RAIN will grapple with is the use of digital technologies within the nuclear sector. Virtual and Augmented Reality, AI and machine learning have arrived but the nuclear sector is poorly positioned to understand and use these rapidly emerging technologies. RAIN will deliver the necessary step changes in fundamental robotics science and establish the pathways to impact that will enable the creation of a research and innovation ecosystem with the capability to lead the world in nuclear robotics. While our centre of gravity is around nuclear we have a keen focus on applications and exploitation in a much wider range of challenging environments.
more_vert assignment_turned_in Project2017 - 2023Partners:Forth Engineering Ltd, Sellafield Ltd, British Energy Generation Ltd, EDF Energy (United Kingdom), UK ATOMIC ENERGY AUTHORITY +26 partnersForth Engineering Ltd,Sellafield Ltd,British Energy Generation Ltd,EDF Energy (United Kingdom),UK ATOMIC ENERGY AUTHORITY,Nu Generation,National Physical Laboratory NPL,Network Rail Ltd,National Nuclear Laboratory (NNL),University of Salford,University of Manchester,Nuclear Decommissioning Authority,Italian Institute of Technology,Italian Institute of Technology,Nuclear Decommissioning Authority,EDF Energy Plc (UK),Nu Generation,KUKA Robotics UK Limited,EURATOM/CCFE,KUKA Robotics UK Limited,FIS360,NDA,United Kingdom Atomic Energy Authority,Forth Engineering Ltd,FIS360,Network Rail,NPL,The University of Manchester,Kuka Ltd,Sellafield Ltd,NNLFunder: UK Research and Innovation Project Code: EP/P01366X/1Funder Contribution: 4,650,280 GBPThe vision for this Programme is to deliver the step changes in Robotics and Autonomous Systems (RAS) capability that are necessary to overcome crucial challenges facing the nuclear industry in the coming decades. The RAS challenges faced in the nuclear industry are extremely demanding and complex. Many nuclear installations, particularly the legacy facilities, present highly unstructured and uncertain environments. Additionally, these "high consequence" environments may contain radiological, chemical, thermal and other hazards. To minimise risks of contamination and radiological shine paths, many nuclear facilities have very small access ports (150 mm - 250 mm diameter), which prevent large robotic systems being deployed. Smaller robots have inherent limitations with power, sensing, communications and processing power, which remain unsolved. Thick concrete walls mean that communication bandwidths may be severely limited, necessitating increased levels of autonomy. Grasping and manipulation challenges, and the associated computer vision and perception challenges are profound; a huge variety of legacy waste materials must be sorted, segregated, and often also disrupted (cut or sheared). Some materials, such as plastic sheeting, contaminated suits/gloves/respirators, ropes, chains can be deformed and often present as chaotic self-occluding piles. Even known rigid objects (e.g. fuel rod casings) may present as partially visible or fragmented. Trivial tasks are complicated by the fact that the material properties of the waste, the dose rates and the layout of the facility within which the waste is stored may all be uncertain. It is therefore vital that any robotic solution be capable of robustly responding to uncertainties. The problems are compounded further by contamination risks, which typically mean that once deployed, human interaction with the robot will be limited at best, autonomy and fault tolerance are therefore important. The need for RAS in the nuclear industry is spread across the entire fuel cycle: reactor operations; new build reactors; decommissioning and waste storage and this Programme will address generic problems across all these areas. It is anticipated that the research will have a significant impact on many other areas of robotics: space, sub-sea, mining, bomb-disposal and health care, for example and cross sector initiatives will be pursued to ensure that there is a two-way transfer of knowledge and technology between these sectors, which have many challenges in common with the nuclear industry. The work will build on the robotics and nuclear engineering expertise available within the three academic organisations, who are each involved in cutting-edge, internationally leading research in relevant areas. This expertise will be complemented by the industrial and technology transfer experience and expertise of the National Nuclear Laboratory who have a proven track record of successfully delivering innovation in to the nuclear industry. The partners in the Programme will work jointly to develop new RAS related technologies (hardware and software), with delivery of nuclear focused demonstrators that will illustrate the successful outcomes of the Programme. Thus we will provide the nuclear supply chain and end-users with the confidence to apply RAS in the nuclear sector. To develop RAS technology that is suitable for the nuclear industry, it is essential that the partners work closely with the nuclear supply chain. To achieve this, the Programme will be based in west Cumbria, the centre of much of the UK's nuclear industry. Working with researchers at the home campuses of the academic institutions, the Programme will create a clear pipeline that propels early stage research from TRL 1 through to industrially relevant technology at TRL 3/4. Utilising the established mechanisms already available in west Cumbria, this technology can then be taken through to TRL 9 and commercial deployment.
more_vert assignment_turned_in Project2017 - 2022Partners:Rovtech Solutions, UltraSoC Technologies Ltd, Jacobs UK Limited, Science and Technology Facilities Council, Shadow Robot Company Ltd +72 partnersRovtech Solutions,UltraSoC Technologies Ltd,Jacobs UK Limited,Science and Technology Facilities Council,Shadow Robot Company Ltd,Jet Propulsion Laboratory,TRTUK,Sellafield Ltd,EDF Energy Plc (UK),Korea Atomic Energy Research Institute (,Haption,AWE,AWE plc,Ionix Advanced Technologies Ltd,BAE Systems (Sweden),NUVIA LIMITED,Japan Atomic Energy Agency,IHI Corporation,Rolls-Royce Plc (UK),James Fisher Nuclear Limited,Ionix Advanced Technologies Ltd,Thales Aerospace,National Physical Laboratory NPL,Japan Atomic Energy Agency (JAEA),University of Birmingham,TREL,EDF Energy (United Kingdom),Atkins (United Kingdom),STFC - Laboratories,Synthotech,The Shadow Robot Company,Imitec Ltd,Toshiba Research Europe Ltd,Imitec Ltd,Atlas Elektronik UK Ltd,Forth Engineering Ltd,NPL,Tohoku University,Forth Engineering Ltd,STFC - LABORATORIES,British Energy Generation Ltd,Rolls-Royce (United Kingdom),Proudman Oceanographic Laboratory,Korea Atomic Energy Res Inst (KAERI),University of Birmingham,Eidos Education,Rolls-Royce (United Kingdom),BAE Systems (United Kingdom),Thales Research and Technology UK Ltd,RI,Synthotech,KUKA Robotics UK Limited,NOC (Up to 31.10.2019),Shield,James Fisher Nuclear Limited,Eidos Education,Atlas Elektronik UK,UltraSoC Technologies Ltd,Bae Systems Defence Ltd,NOC,Kuka Ltd,Haption,Jacobs Engineering UK Ltd.,JET Propulsion Laboratory,National Nuclear Laboratory (NNL),Rovtech Solutions,Royal Institution of Great Britain,IHI Corporation,Nuvia Limited,Atkins Ltd,Tohoku University,KUKA Robotics UK Limited,Sellafield Ltd,NNL,Shield,BAE Systems (UK),Atkins LtdFunder: UK Research and Innovation Project Code: EP/R02572X/1Funder Contribution: 12,256,900 GBPNuclear facilities require a wide variety of robotics capabilities, engendering a variety of extreme RAI challenges. NCNR brings together a diverse consortium of experts in robotics, AI, sensors, radiation and resilient embedded systems, to address these complex problems. In high gamma environments, human entries are not possible at all. In alpha-contaminated environments, air-fed suited human entries are possible, but engender significant secondary waste (contaminated suits), and reduced worker capability. We have a duty to eliminate the need for humans to enter such hazardous environments wherever technologically possible. Hence, nuclear robots will typically be remote from human controllers, creating significant opportunities for advanced telepresence. However, limited bandwidth and situational awareness demand increased intelligence and autonomous control capabilities on the robot, especially for performing complex manipulations. Shared control, where both human and AI collaboratively control the robot, will be critical because i) safety-critical environments demand a human in the loop, however ii) complex remote actions are too difficult for a human to perform reliably and efficiently. Before decommissioning can begin, and while it is progressing, characterization is needed. This can include 3D modelling of scenes, detection and recognition of objects and materials, as well as detection of contaminants, measurement of types and levels of radiation, and other sensing modalities such as thermal imaging. This will necessitate novel sensor design, advanced algorithms for robotic perception, and new kinds of robots to deploy sensors into hard-to-reach locations. To carry out remote interventions, both situational awareness for the remote human operator, and also guidance of autonomous/semi-autonomous robotic actions, will need to be informed by real-time multi-modal vision and sensing, including: real-time 3D modelling and semantic understanding of objects and scenes; active vision in dynamic scenes and vision-guided navigation and manipulation. The nuclear industry is high consequence, safety critical and conservative. It is therefore critically important to rigorously evaluate how well human operators can control remote technology to safely and efficiently perform the tasks that industry requires. All NCNR research will be driven by a set of industry-defined use-cases, WP1. Each use-case is linked to industry-defined testing environments and acceptance criteria for performance evaluation in WP11. WP2-9 deliver a variety of fundamental RAI research, including radiation resilient hardware, novel design of both robotics and radiation sensors, advanced vision and perception algorithms, mobility and navigation, grasping and manipulation, multi-modal telepresence and shared control. The project is based on modular design principles. WP10 develops standards for modularisation and module interfaces, which will be met by a diverse range of robotics, sensing and AI modules delivered by WPs2-9. WP10 will then integrate multiple modules onto a set of pre-commercial robot platforms, which will then be evaluated according to end-user acceptance criteria in WP11. WP12 is devoted to technology transfer, in collaboration with numerous industry partners and the Shield Investment Fund who specialise in venture capital investment in RAI technologies, taking novel ideas through to fully fledged commercial deployments. Shield have ring-fenced £10million capital to run alongside all NCNR Hub research, to fund spin-out companies and industrialisation of Hub IP. We have rich international involvement, including NASA Jet Propulsion Lab and Carnegie Melon National Robotics Engineering Center as collaborators in USA, and collaboration from Japan Atomic Energy Agency to help us carry out test-deployments of NCNR robots in the unique Fukushima mock-up testing facilities at the Naraha Remote Technology Development Center.
more_vert
