TNO Rijswijk
TNO Rijswijk
3 Projects, page 1 of 1
assignment_turned_in ProjectPartners:Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse, Dr Ten BV, Fluidwell, Managing Director, on2quest BV, Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology +27 partnersUniversiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,Dr Ten BV,Fluidwell, Managing Director,on2quest BV,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology,Maastricht University, Faculty of Science and Engineering, Circular Chemical Engineering,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Chemical Process Intensification (SPI),Leiden Probe Microscopy B.V.,LIC,TNO (former ECN),TNO Rijswijk,Technische Universiteit Delft, Faculteit Mechanical Engineering (ME), Process & Energy,Brabetech,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen,Blue Circle Olefins BV,Hanze UAS,NEM Energy BV,Saxion,HAN,Fontys University of Applied Sciences,Power to Power,Circonica Circular Energy BV,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Material Chemistry and Catalysis (MCC),DOPS Recycling Technologies B.V.,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van t Hoff Institute for Molecular Sciences (HIMS), Homogeneous, Supramolecular and Bio-Inspired Catalysis,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Zernike Institute for Advanced Materials,FeyeCon Carbon Dioxide Technologies, FeyeCon D&I BV,NWO-institutenorganisatie, DIFFER - Dutch Institute for Fundamental Energy Research,Stichting Wageningen Research, Wageningen Food & Biobased Research (WFBR),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Inorganic Chemistry and Catalysis,Brusche Process Technology BV,Avans University of Applied SciencesFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: NGF.1716.24.009The research project HyCARB brings together Dutch clean-tech companies, universities and research institutes to develop the technology base for industrial end users worldwide for carbon-based chemicals production using hydrogen, green electrons and captured carbon dioxide. New scientific approaches will be pursued to achieve breakthroughs for cost- and energy-efficient sustainable production of fuels and chemicals by identifying, developing and testing improved catalysts, key components such as reactors, electrolysers and innovative approaches for electrified heating. Laboratory work using the latest generation analytical equipment will be combined with techno-economic and lifecycle assessments of a range of technologies to help industry decarbonise.
more_vert assignment_turned_in Project2021 - 9999Partners:Universiteit van Amsterdam, TNO Rijswijk, Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Gravitation and Astroparticle Physics Amsterdam (GRAPPA), Instituut voor Theoretische Fysica (ITFA), TNO Rijswijk, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, High Field Magnet Laboratory +10 partnersUniversiteit van Amsterdam,TNO Rijswijk,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Gravitation and Astroparticle Physics Amsterdam (GRAPPA), Instituut voor Theoretische Fysica (ITFA),TNO Rijswijk,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, High Field Magnet Laboratory,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, High Field Magnet Laboratory,Rijksuniversiteit Groningen,Rijksuniversiteit Groningen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),THUAS,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP),NWO-institutenorganisatie,Radboud Universiteit Nijmegen,NWO-institutenorganisatie, Nikhef - Nationaal instituut voor subatomaire fysica,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Bureau der FaculteitFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1292.19.231One second after the Big Bang neutrinos decoupled from the expanding plasma that was to become our Universe. These neutrinos still exist, but are now at a temperature of 1.9 K, which makes their energy too low for existing detection methods. Within the PTOLEMY collaboration we have developed a design for a detector to observe these relic neutrinos for the first time. When captured by a tritium nucleus they can induce inverse beta decay, a two-body decay where the electrons are monochromatic with an energy around 100 meV above the end-point of the tritium decay spectrum. To observe this signal above the enormous background from three-body tritium decay we need to measure the electron energy with unprecedented precision. There are daunting experimental challenges. This research proposal addresses two major ones. First, there is the tritium-on-graphene target production and determination of its properties that are essential to have monochromatic electrons. To qualify the radiopurity and backgrounds we will develop novel field effect transistors (FETs) based active pixels on a graphene substrate. Graphene has unique properties which make it potentially superior to silicon for particle detection. In principle, the absorption and/or desorption of a single tritium atom can be detected in a measurable change of its resistance. The second challenge is a novel RF detection technique to provide a single electron energy estimator while leaving it nearly undisturbed. We need to detect the RF signal of 1fW in a time of around 300 microseconds to provide an estimate of the initial electron energy with 0.1% precision. Detection of the relic neutrinos would be of similar importance as the discovery of the cosmic microwave background, for which two Nobel Prizes have been awarded, and provide us with a unique image of our Universe one second after the Big Bang.
more_vert assignment_turned_in Project2023 - 9999Partners:TNO Rijswijk, Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Energy and Sustainability Research Institute Groningen (ESRIG), Centre for Isotope Research (CIO), Rijksuniversiteit Groningen, TNO Rijswijk, Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Remote Sensing (GRS) +18 partnersTNO Rijswijk,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Energy and Sustainability Research Institute Groningen (ESRIG), Centre for Isotope Research (CIO),Rijksuniversiteit Groningen,TNO Rijswijk,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Geoscience & Remote Sensing (GRS),Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica, Microelectronics,Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica, Microelectronics, Elektronische Instrumentatie,Robin Radar Systems,NWO-institutenorganisatie, ASTRON - Netherlands Institute for Radio Astronomy,Ministerie van Infrastructuur en Waterstaat, Koninklijk Nederlands Meteorologisch Instituut, Atmosferisch Onderzoek,Technische Universiteit Delft,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Watermanagement, Water Resources,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen,Robin Radar Systems,TNO Den Haag,TNO Den Haag, Fysisch en Elektronisch Laboratorium,NWO-institutenorganisatie,Technische Universiteit Eindhoven - Eindhoven University of Technology,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Electrical Engineering - Department of Electrical Engineering, Electromagnetics (EM),Technische Universiteit Eindhoven - Eindhoven University of Technology,Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica, Microwave Sensing, Signals and Systems (MS3),Ministerie van Infrastructuur en Waterstaat,Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en InformaticaFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 175.2021.038How do we prepare for increasingly extreme weather conditions? The answer to this question is hidden in an essential part of our climate system: clouds. Researchers will develop a new type of radar that can observe the whole sky in a matter of seconds. It is designed to both reveal how particles grow inside clouds and precipitation and to track large-scale movements of weather systems. The transportable radar will contribute to breakthroughs in climate and atmospheric research, more precise weather forecasts (crucial for water management) and further (radar) innovations.
more_vert
