Shield
Shield
2 Projects, page 1 of 1
assignment_turned_in Project2017 - 2022Partners:Royal Institution of Great Britain, NOC, Toshiba (United Kingdom), Jacobs Engineering UK Ltd., Rolls-Royce (United Kingdom) +71 partnersRoyal Institution of Great Britain,NOC,Toshiba (United Kingdom),Jacobs Engineering UK Ltd.,Rolls-Royce (United Kingdom),Haption,IHI Corporation (Japan),National Oceanography Centre,EDF Energy (United Kingdom),Japan Atomic Energy Agency,Eidos Education,Rovtech Solutions,James Fisher Nuclear Limited,University of Birmingham,Atkins (United Kingdom),Sellafield Ltd,Tohoku University,Tohoku University,BAE Systems (United Kingdom),Rovtech Solutions,BAE Systems (UK),Thales Research and Technology UK Ltd,Jacobs UK Limited,Thales (United Kingdom),Forth Engineering Ltd,UltraSoC Technologies Ltd,TREL,IHI Corporation,NPL,STFC - Laboratories,Science and Technology Facilities Council,UltraSoC Technologies Ltd,Shield Therapeutics (United Kingdom),Korea Atomic Energy Research Institute (,Shield,Haption (France),Japan Atomic Energy Agency,Imitec Ltd,Rolls-Royce (United Kingdom),National Nuclear Laboratory (NNL),AWE,Nuvia (United Kingdom),Atkins Ltd,KUKA Robotics UK Limited,Sellafield (United Kingdom),Synthotech,Jet Propulsion Lab,KUKA (United Kingdom),Atlas Elektronik (United Kingdom),Shadow Robot Company Ltd,RI,TRTUK,NNL,Synthotech,Eidos Education,National Physical Laboratory,BAE Systems (Sweden),Imitec Ltd,University of Birmingham,STFC - LABORATORIES,JET Propulsion Laboratory,KUKA Robotics UK Limited,EDF Energy Plc (UK),James Fisher Nuclear Limited,Rolls-Royce Plc (UK),Atkins Ltd,Korea Atomic Energy Research Institute,Atomic Weapons Establishment,Shadow Robot (United Kingdom),NOC (Up to 31.10.2019),Ionix Advanced Technologies (United Kingdom),NUVIA LIMITED,Forth Engineering Ltd,Atlas Elektronik UK Ltd,EDF Energy (United Kingdom),Ionix Advanced Technologies LtdFunder: UK Research and Innovation Project Code: EP/R02572X/1Funder Contribution: 12,256,900 GBPNuclear facilities require a wide variety of robotics capabilities, engendering a variety of extreme RAI challenges. NCNR brings together a diverse consortium of experts in robotics, AI, sensors, radiation and resilient embedded systems, to address these complex problems. In high gamma environments, human entries are not possible at all. In alpha-contaminated environments, air-fed suited human entries are possible, but engender significant secondary waste (contaminated suits), and reduced worker capability. We have a duty to eliminate the need for humans to enter such hazardous environments wherever technologically possible. Hence, nuclear robots will typically be remote from human controllers, creating significant opportunities for advanced telepresence. However, limited bandwidth and situational awareness demand increased intelligence and autonomous control capabilities on the robot, especially for performing complex manipulations. Shared control, where both human and AI collaboratively control the robot, will be critical because i) safety-critical environments demand a human in the loop, however ii) complex remote actions are too difficult for a human to perform reliably and efficiently. Before decommissioning can begin, and while it is progressing, characterization is needed. This can include 3D modelling of scenes, detection and recognition of objects and materials, as well as detection of contaminants, measurement of types and levels of radiation, and other sensing modalities such as thermal imaging. This will necessitate novel sensor design, advanced algorithms for robotic perception, and new kinds of robots to deploy sensors into hard-to-reach locations. To carry out remote interventions, both situational awareness for the remote human operator, and also guidance of autonomous/semi-autonomous robotic actions, will need to be informed by real-time multi-modal vision and sensing, including: real-time 3D modelling and semantic understanding of objects and scenes; active vision in dynamic scenes and vision-guided navigation and manipulation. The nuclear industry is high consequence, safety critical and conservative. It is therefore critically important to rigorously evaluate how well human operators can control remote technology to safely and efficiently perform the tasks that industry requires. All NCNR research will be driven by a set of industry-defined use-cases, WP1. Each use-case is linked to industry-defined testing environments and acceptance criteria for performance evaluation in WP11. WP2-9 deliver a variety of fundamental RAI research, including radiation resilient hardware, novel design of both robotics and radiation sensors, advanced vision and perception algorithms, mobility and navigation, grasping and manipulation, multi-modal telepresence and shared control. The project is based on modular design principles. WP10 develops standards for modularisation and module interfaces, which will be met by a diverse range of robotics, sensing and AI modules delivered by WPs2-9. WP10 will then integrate multiple modules onto a set of pre-commercial robot platforms, which will then be evaluated according to end-user acceptance criteria in WP11. WP12 is devoted to technology transfer, in collaboration with numerous industry partners and the Shield Investment Fund who specialise in venture capital investment in RAI technologies, taking novel ideas through to fully fledged commercial deployments. Shield have ring-fenced £10million capital to run alongside all NCNR Hub research, to fund spin-out companies and industrialisation of Hub IP. We have rich international involvement, including NASA Jet Propulsion Lab and Carnegie Melon National Robotics Engineering Center as collaborators in USA, and collaboration from Japan Atomic Energy Agency to help us carry out test-deployments of NCNR robots in the unique Fukushima mock-up testing facilities at the Naraha Remote Technology Development Center.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1041e686b3327b600ce2753fef821153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1041e686b3327b600ce2753fef821153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2024Partners:Geometrics, Jacobs, ESP Central Ltd, Fraunhofer UK Research Ltd, Torr Scientific Ltd +114 partnersGeometrics,Jacobs,ESP Central Ltd,Fraunhofer UK Research Ltd,Torr Scientific Ltd,Oxford Electromagnetic Solutions Limited,BAE Systems (UK),Severn Trent Group,PA CONSULTING SERVICES LIMITED,Atkins Global (UK),The Coal Authority,BP International Limited,Qinetiq (United Kingdom),USYD,Knowledge Transfer Network Ltd,Atkins Global,ESP Central (United Kingdom),ITM,Forresters,QuSpin (United States),Cardno,Defence Science & Tech Lab DSTL,Laser Quantum Ltd,Ordnance Survey,M Squared Lasers (United Kingdom),Shield,PA Consulting Group,MTC,Geomatrix,Torr Scientific Ltd,Bridgeporth,Geometrics,Oxford Electromagnetic Solutions Limited,BALFOUR BEATTY RAIL,Airbus Defence and Space,e2v technologies plc,BP (United Kingdom),Severn Trent Group,RSK Group plc,OS,General Lighthouse Authorities,Unitive Design and Analysis Ltd.,General Lighthouse Authorities,J Murphy & Sons Limited,Nemein,Magnetic Shields Limited,Magnetic Shields Limited,Leonardo MW Ltd,British Telecommunications Plc,Royal IHC (UK),Defence Science and Technology Laboratory,Collins Aerospace,BAE Systems (United Kingdom),National Centre for Trauma,Fraunhofer UK Research Ltd,Manufacturing Technology Centre (United Kingdom),Forresters,Atkins (United Kingdom),Cardno,PA Consultancy Services Ltd,RSK Group plc,Northrop Gruman (UK),BALFOUR BEATTY PLC,BT Research,Airbus (United Kingdom),ITM Monitoring,MBDA UK Ltd,The Coal Authority,Qioptiq Ltd,Balfour Beatty (United Kingdom),BP INTERNATIONAL LIMITED,MBDA (United Kingdom),M Squared Lasers (United Kingdom),Royal IHC (UK),Bridgeporth,Ferrovial (United Kingdom),National Centre for Trauma,Added Scientific Ltd,Royal Institute of Navigation,National Physical Laboratory,Airbus Defence and Space,Novanta (United Kingdom),Amey Plc,BAE Systems (Sweden),J Murphy & Sons Limited,Skyrora Limited,RedWave Labs,Nemein,RedWave Labs,Knowledge Transfer Network,AWE,Atomic Weapons Establishment,Collins Aerospace,Geomatrix,Skyrora Limited,Network Rail,Northrop Gruman,Severn Trent (United Kingdom),Teledyne e2v (United Kingdom),Oxford Instruments (United Kingdom),NPL,Re:Cognition Health Limited,Oxford Instruments (United Kingdom),XCAM Ltd (UK),University of Birmingham,The Royal Institute of Navigation,QuSpin,Unitive Design & Analysis Ltd,Jacobs (United States),Shield Therapeutics (United Kingdom),Added Scientific Ltd,Canal and River Trust,Defence Science & Tech Lab DSTL,BT,Canal & River Trust,Network Rail,University of Birmingham,Re:Cognition Health,XCAM LtdFunder: UK Research and Innovation Project Code: EP/T001046/1Funder Contribution: 28,537,600 GBPThe Quantum Technology Hub in Sensors and Timing, a collaboration between 7 universities, NPL, BGS and industry, will bring disruptive new capability to real world applications with high economic and societal impact to the UK. The unique properties of QT sensors will enable radical innovations in Geophysics, Health Care, Timing Applications and Navigation. Our established industry partnerships bring a focus to our research work that enable sensors to be customised to the needs of each application. The total long term economic impact could amount to ~10% of GDP. Gravity sensors can see beneath the surface of the ground to identify buried structures that result in enormous cost to construction projects ranging from rail infrastructure, or sink holes, to brownfield site developments. Similarly they can identify oil resources and magma flows. To be of practical value, gravity sensors must be able to make rapid measurements in challenging environments. Operation from airborne platforms, such as drones, will greatly reduce the cost of deployment and bring inaccessible locations within reach. Mapping brain activity in patients with dementia or schizophrenia, particularly when they are able to move around and perform tasks which stimulate brain function, will help early diagnosis and speed the development of new treatments. Existing brain imaging systems are large and unwieldy; it is particularly difficult to use them with children where a better understanding of epilepsy or brain injury would be of enormous benefit. The systems we will develop will be used initially for patients moving freely in shielded rooms but will eventually be capable of operation in less specialised environments. A new generation of QT based magnetometers, manufactured in the UK, will enable these advances. Precision timing is essential to many systems that we take for granted, including communications and radar. Ultra-precise oscillators, in a field deployable package, will enable radar systems to identify small slow-moving targets such as drones which are currently difficult to detect, bringing greater safety to airports and other sensitive locations. Our world is highly dependent on precise navigation. Although originally developed for defence, our civil infrastructure is critically reliant on GNSS. The ability to fix one's location underground, underwater, inside buildings or when satellite signals are deliberately disrupted can be greatly enhanced using QT sensing. Making Inertial Navigation Systems more robust and using novel techniques such as gravity map matching will alleviate many of these problems. In order to achieve all this, we will drive advanced physics research aimed at small, low power operation and translate it into engineered packages to bring systems of unparalleled capability within the reach of practical applications. Applied research will bring out their ability to deliver huge societal and economic benefit. By continuing to work with a cohort of industry partners, we will help establish a complete ecosystem for QT exploitation, with global reach but firmly rooted in the UK. These goals can only be met by combining the expertise of scientists and engineers across a broad spectrum of capability. The ability to engineer devices that can be deployed in challenging environments requires contributions from physics electronic engineering and materials science. The design of systems that possess the necessary characteristics for specific applications requires understanding from civil and electronic engineering, neuroscience and a wide range of stakeholders in the supply chain. The outputs from a sensor is of little value without the ability to translate raw data into actionable information: data analysis and AI skills are needed here. The research activities of the hub are designed to connect and develop these skills in a coordinated fashion such that the impact on our economy is accelerated.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0ac285ebd9933540a6a7e68064c01802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0ac285ebd9933540a6a7e68064c01802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu