Powered by OpenAIRE graph

LSCE-Orme

Country: France
9 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: NE/N001079/1
    Funder Contribution: 594,112 GBP

    Phytoplankton are microscopic plants that live in the sunlit surface ocean. Phytoplankton fix carbon dioxide and use essential nutrients such as nitrate, phosphate and trace metals, such as zinc and iron, via photosynthesis, to produce organic matter. In doing so, marine phytoplankton provide energy to higher trophic levels, such as fish and marine mammals, as well as contribute to the distribution of carbon dioxide between the atmosphere and ocean. Over 40% of the ocean consists of vast remote ecosystems known as subtropical gyres, which are typified by warm surface waters and extremely low nutrient concentrations. Indeed, the activity of phytoplankton is often suppressed by the lack of nutrients. However, due to their vast areal extent, subtropical gyres have a significant impact on the way the ocean cycles carbon and nutrients. This means that any future changes in the activity of subtropical systems will have important impacts on marine resources and how the ocean interacts with the climate and the Earth System. Our present understanding of how phytoplankton activity in the gyres will change in the future in response to climate change is that there will be an overall reduction in the supply of all essential nutrients due to changes in ocean circulation, causing a decline in phytoplankton activity. However, this simplified view ignores both the natural and anthropogenic addition of nitrogen to surface waters, which enhance stocks of nitrate relative to phosphate. In the subtropical North Atlantic, the natural addition of nitrogen via nitrogen fixation causes phosphate to limit phytoplankton growth. In the subtropical North Pacific, recent observations show that the addition of anthropogenic nitrogen via combustion and fertilisers are causing the North Pacific to be driven from a nitrate to a phosphate limited ecosystem. The on-going addition of nitrogen to the subtropical gyre systems from continued anthropogenic sources implies that phosphate scarcity will become an increasing problem over the coming decades. At present, phytoplankton are thought to adapt to phosphate scarcity by producing enzymes that allow them to acquire phosphate from the more abundant pools of dissolved organic phosphorus (DOP). As such, the oceanographic community typically assumes phosphate limitation of phytoplankton activity to be unimportant. In contrast to this prevailing view, our team have found that the ability of phytoplankton to acquire phosphate from DOP can be regulated by the supply of zinc. Zinc is a trace metal that is essential for phytoplankton, but has never before been shown to play such a fundamental role in controlling phytoplankton growth. Much attention has been placed on how the trace metal iron interacts with nitrate and phosphate in the subtropics, but there is now an explicit need to better understand the role of zinc and its interaction with other nutrient cycles and phytoplankton. Our initial work suggests that by controlling the impact of phosphate scarcity, zinc may be the ultimate arbiter of how subtropical gyre ecosystems evolve. Our goal is to combine a field study to the subtropical gyre North Atlantic and use novel techniques to measure how zinc and phosphorus control biological activity. We will then use the latest modelling tools to explore our observations further over decadal timescales and other ocean basins. The North Atlantic gyre is typified by low phosphate and zinc and is therefore an ideal natural laboratory in which to understand how zinc availability may shape future subtropical gyre ecosystems. Our ambitious proposal has the potential to produce a step change in our understanding of how subtropical gyre ecosystems respond to ongoing climate change. Our team combines world leaders in the observation and modelling of nutrients and phytoplankton biological activity and is therefore uniquely placed to deliver this crucial scientific insight.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/H020241/1
    Funder Contribution: 321,203 GBP

    This project will quantify the impacts of processes that control export of pollution from Europe on air quality, climate and ecosystems. These processes currently lack observational constraint, and our understanding is largely based on model simulations. We will conduct the first studies of European pollution export constrained by extensive aircraft and satellite observations, and quantify air quality and climate impacts. We will also quantify the role of ozone pollution from Europe in reducing CO2 uptake to European and Siberian forest, due to its harmful effects on vegetation. This will be compared with the direct climate impact of European ozone as a greenhouse gas. This will also allow quantification of a reduction in the effectiveness of CO2 emission cuts due to ozone limitation of carbon uptake to the biosphere, which is of urgent interest to policy makers and governments. Ozone is a pollutant in the lower atmosphere, which is not emitted directly, but is formed in the atmosphere by sunlight-driven chemical reactions acting on nitrogen oxides emitted from high-temperature fuel combustion (primarily motor vehicles, power plants, biomass burning) and volatile organic compounds, emitted from both man-made and natural sources. Ozone is a strong oxidant and a greenhouse gas in the lower atmosphere, and its concentrations have increased markedly since pre-industrial times. It is harmful to human health, and also damages vegetation. This leads to substantial reductions in crop yields, and also results in a reduction in the ability of vegetation to take up CO2 from the atmosphere - meaning it may result in further 'indirect' greenhouse warming. Export of pollution from the major continents in controlled by transfer of pollutants from the surface boundary layer (BL) to the overlying large-scale free troposphere (FT), where it can be transported over 1000s km. Over North America and Asia this 'venting' of the BL is controlled largely by fronts associated with low-pressure weather systems, however over central Europe these are much less frequent. Processes controlling European pollution export are much less well understood, and our lack of understanding is exacerbated by a lack of observations in regions downstream from Europe (mainly Arctic, Siberia and over the Mediterranean basin). Our approach will be to use new observations from aircraft experiments over the Arctic and Siberia, satellites and numerical models to quantify the roles of dynamic and chemical processes in controlling ozone pollution export from Europe. We will investigate how these processes determine the air quality and climate impacts of European ozone precursor emissions. In addition, we will determine how anthropogenic and natural processes interact to affect these processes, and quantify the impact of European ozone pollution on CO2 uptake to European and Siberian vegetation. We will finally quantify how these processes may change under future climate (year 2050).

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N006828/1
    Funder Contribution: 40,297 GBP

    Predictions of future climate, essential for safeguarding society and ecosystems, are underpinned by numerical models of the Earth system. These models are routinely tested against, and in many cases tuned towards, observations of the modern Earth system. However, the model predictions of the climate of the end of this century lie largely outside of this evaluation period, due to the projected future CO2 forcing being significantly greater than that seen in the observational record. Indeed, recent work reconstructing past CO2 has shown that the closest analogues to the 22nd century, in terms of CO2 concentration, are tens of millions of years ago, in 'Deep-Time'. The Palaeoclimate Modelling Intercomparison Project (PMIP) provides a framework (but no funding!) by which the palaeoclimate modelling community assesses state-of-the-art climate models relative to past climate data. Traditionally, PMIP has focussed on the relatively recent mid-Holocene (6,000 years ago) and Last Glacial Maximum (21,000 years ago), but these time periods have even lower CO2 than modern (~280 and ~180 ppmv respectively, c.f. ~400 ppmv for the modern). Recently, PMIP has expanded into other time periods, most notably the mid-Pliocene (3 million years ago), but even then, CO2 was most likely less than modern values (~380 ppmv). The modelling community would clearly benefit from an intercomparison of 'Deep-Time' climates, when CO2 levels were close to those predicted for the end of this century. We will organise and provide funding for 2 workshops, with the aim of producing papers describing the experimental design and outputs from a new climate Model Intercomparison Project - "DeepMIP", focussing on past climates in which atmospheric CO2 concentrations were similar to those projected for the end of this century. The papers will evaluate the models relative to past geological data, and aim to understand the reasons for the model-model differences and model-data (dis)agreements, providing information of relevance to the IPCC. A previous NERC grant, NE/K014757/1, is currently aiming to assess climate sensitivity (the response of surface air temperature to a doubling of atmospheric CO2), through geological time. That project is focussing on many time periods, but with only one model. This IOF will complement that project, and bring added-value, by focussing on one particular time period, but with many models. As such we will address the crucial issue of model-dependence.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/I03002X/1
    Funder Contribution: 240,481 GBP

    Warming of the climate system is unequivocal, and very likely due to the increase of carbon dioxide (CO2) and other greenhouse gases in the atmosphere. CO2 is the most important and fastest-growing greenhouse gas. It is released to the atmosphere mainly by the burning of fossil fuel from human activities and by deforestation. Governments around the world have pledged to limit global warming to 2 degree Celsius above pre-industrial levels. According to current knowledge, such a commitment requires that the global emissions of CO2 peak at the latest between 2015 and 2020, and decrease sharply afterwards. The political discussions to develop an international agreement that would limit global warming are based on scientific knowledge provided by the international community. Key to those discussions is the provision of the latest up to date information, and the transparency of the scientific debate and information. The Global Carbon Project (GCP), established in 2001, coordinates international research on the carbon cycle. Since 2004, the GCP with the support of the community has compiled, analysed and published information on the "global CO2 budget", including the CO2 emissions and their partitioning among the atmosphere, ocean and land reservoirs. This effort has provided tremendous information to help the policy process and the public understand the human and natural factors that control the concentration of CO2 in the atmosphere. The annual CO2 budget has growth beyond the capacity of the GCP. At the same time, the demand is growing for more and better information, more background supporting material, more transparency in the methods and process, and traceability of the information. The community is trying to organise itself further to support this important effort. This proposal aims to establish an office of the GCP in at the Tyndall Centre for Climate Change Research of the University of East Anglia. This location would be ideal to support the publication of the annual CO2 budget because of its already well-established research on the carbon cycle, the strength and complementary work done in its existing programmes, and its unparallelled record of providing high quality policy-relevant science to UK and international policymakers. The UK GCP office would provide key support, and further credibility and visibility to the annual CO2 budget. Scientists have begun to think about how to produce carbon information services to assist in the necessary transition towards a low-carbon economy. One way proposed by the GCP is to institutionalise the more operational aspects of the GCP activities, such as the publication of CO2 budgets, through the establishment of an International Carbon Office. The development of such an ambitious project needs careful thinking and strong commitment from stakeholders. The UK GCP office would work with existing organisations to establish the structural basis of an ICO and determine its potential and viability in the long term.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K002449/1
    Funder Contribution: 744,321 GBP

    To minimize the risk of dangerous climate change associated with increasing concentrations of atmospheric greenhouse gases (GHG), as part of ongoing international efforts, the 2008 Climate Change Act requires that the UK reduces its GHG emissions by at least 80% by 2050, compared to 1990 levels. To support such legislation, methods must be developed to reduce uncertainty on existing national GHG emissions estimates and monitor the efficacy of emissions reduction strategies. In 2010, CO2 represented about 85% of total UK GHG emissions, with the remainder largely from methane (CH4) and nitrous oxide (N2O). In 2010, the main UK sources of CO2 were energy supply, road transport, business, and residential; the main sources of CH4 were agriculture and landfill with small sources from gas leakage and coal mines; and the main sources of N2O were agriculture, industrial process, and road transport. There are substantial associated uncertainties with sectoral estimates of these emissions, particularly for N2O. The main focus of Greenhouse gAs Uk and Global Emissions (GAUGE) is to quantify UK budgets of CO2, CH4, and N2O from different sectors, and to improve global GHG budgets. The UK study will focus on fossil fuels and agriculture, the two largest sources of the three GHGs. We will achieve this by combining atmospheric measurements with computer models of the atmosphere, which describe the movement of GHGs after emission. We already have a reasonable idea of where GHGs are emitted but the size of the emissions typically has a large associated error. Depending on the emission type it may also have a substantial seasonal cycle (e.g., agriculture). It is therefore important we make regular GHG measurements at different times of the year and in different places. The UK research aircraft will provide the broad-scale 3-D perspective on the inflow and outflow of UK GHG budgets, complementing information from existing tall towers. The network of tall towers measure GHGs at 100-200m above the surface to ensure that the sampled air is representative of larger areas, and the towers are intentionally sited to provide estimates of GHG emissions in the Devolved Administrations. As part of GAUGE we will add to this network with a tower in the Scottish borders that provides substantially more information about the north of England, Scotland, and the North Sea; a tower over SE England, downwind of London; and we will support existing instruments on the BT tower in central London. The SE London tower and the BT tower together will allow us to provide the first multi-year record of urban emissions from a megacity. We will use GHG isotopes to improve understanding of the fossil fuel sources. A detailed study of agricultural GHG emissions will be conducted over East Anglia, allowing us to quantify the importance of this sector in the UK GHG budget. Weekly measurements aboard a North Sea ferry will provide constraints on UK GHG fluxes by regularly sampling transects of UK outflow. Satellite observations of GHGs offer a unique global perspective, linking UK emissions to the rest of the world, and we will work with NASA to develop and apply new observations to quantify global GHG budgets on a sub-UK spatial scale. Embedded in this long-term measurement strategy will be a measurement intensive to quantify London GHG emissions, where we will use the UK research aircraft to sample profiles of upwind/downwind air, validate dedicated satellite observations, and link urban measurements with downwind in situ and tall tower measurements. In GAUGE we bring together computer models of the atmosphere, and a team of world-leading modellers, in order to relate observed variations of GHGs to estimates of the underlying emissions. Statistical approaches will be used to find emissions that best agree with the measurements, taking account of model and data uncertainties. The main outcome from GAUGE will be robust GHG emission estimates from the UK and from the world.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.