Powered by OpenAIRE graph

TTTECH AUTO AG

Country: Austria
22 Projects, page 1 of 5
  • Funder: European Commission Project Code: 101139996
    Overall Budget: 33,956,400 EURFunder Contribution: 10,016,600 EUR

    ShapeFuture will drive innovation in fundamental Electronic Components and Systems (ECS) that are essential for robust, powerful, fail-operational and integrated perception, cognition, AI-enabled decision making, resilient automation and computing, as well as communications, for highly automated vehicles. Its overarching vision is to bring ECS Innovation at the Heart of Europe's Mobility Transformation, thereby elevating Sovereignty by Perfecting Programmable ECS Solutions for Intelligent, Safe, Connected, and Highly Automated Vehicles. The project will result in the following main tangible outcomes: • Safety, security and reliability of in-vehicle systems to levels appropriate for mass-market deployment. • Availability and supply of leading-edge ECS for the European automotive supply chain and for OEMs to be at the forefront of technology developments in the 2030s. • Increased Accuracy and Robustness of ECS for perception with smaller form factors and lower power consumption. • ECS attributed with cognition features and improved human-Machine Interface (HMI). • ECS with cognitive processing and decision-making capabilities. • ECS for resilient automation and communications. • Increased technology acceptance that will also lead to business sovereignty safeguard. 15 demonstrators and 2 impact studies will showcase the project’s achievements and their capability to deliver innovations and secure future application advances in core markets for European society – Mobility, Green Deal, Digital Society, Safety and Industry. The project innovations will leverage the expertise of world-renowned industrial (5 OEMs, 24 Tier-1, Tier-2 and technology providers) and 12 research partners along the complete automotive and semiconductor value chains, providing Europe with a competitive edge in a growing market. Importantly, ShapeFuture will contribute to ensuring European ECS Sovereignty by shaping the future of ECS in mobility.

    more_vert
  • Funder: European Commission Project Code: 101139789
    Overall Budget: 61,616,800 EURFunder Contribution: 17,079,300 EUR

    The HAL4SDV proposal aligns with the EU Strategic Research and Innovation Agenda 2022 on Electronic Components and Systems. It aims to pioneer methods, technologies, and processes for series vehicle development beyond 2030, driven by anticipated advancements in microelectronics, communication technology, software engineering, and AI. HAL4SDV envisions a future where vehicles are fully integrated into smart cities, intelligent highways, and cyberspace, blurring the lines between inside and outside the vehicle. Assumptions include data-centricity, code portability, efficient data fusion, unlimited scalability, real-time capabilities, and robust cybersecurity. The objectives encompass unifying software interfaces, creating a hardware abstraction framework, enabling Over-The-Air (OTA) updates, designing platform architectures, ensuring hardware abstraction and virtualization, offering hardware support, automating integration, supporting safety features, harnessing edge computing, implementing security measures, and providing essential development tools. By focusing on these objectives, HAL4SDV aims to establish a unified ecosystem for software-defined vehicles, positioning Europe's automotive industry for continued leadership post-2030 while leveraging existing results and technologies to accelerate progress.

    more_vert
  • Funder: European Commission Project Code: 824244
    Overall Budget: 6,531,670 EURFunder Contribution: 4,873,420 EUR

    SYS2WHEEL will provide brand-independent components and systems for integrated 3rd generation commercial battery electric vehicles (cBEVs) for CO2-free city logistics. High efficiency, performance, packaging and modularity enable efficient integration. Mass production costs of e-powertrain components and systems will be considerably reduced, while eliminating negative impact on drivability, safety and reliability. The same components and systems shall be used for different commercial vehicle categories, sub-categories and brands, in urban and inter-urban applications. The project will foster the transition to a broad range of cBEVs and will accelerate market penetration of e-powertrain components and systems. SYS2WHEEL will demonstrate its results on N1 and N2 cBEVs and assesses the related potential for the whole range of L and N category cBEVs as well as extensions to M1 and M2 passenger carriers. Essential enabling elements in SYS2WHEEL are e-motors for both, in-wheel and e-axle systems, a novel suspension for in-wheel systems, the in-wheel and e-axle systems themselves, time-sensitive networking, advanced controls, affordable and efficient processes, as well as scalability/ transferability of innovations. Specifically SYS2WHEEL will reduce costs in mass production by at least 20% through components becoming obsolete and reduction of wiring costs due to application of time-sensitive networks. The powertrain efficiency will be increased by improved e-motor windings, advanced rare-earth magnets, reduced powertrain rotating parts, reduced losses, advanced controls and weight reduction. Affordability, and user-friendliness will be addressed by enhanced modularity and packaging, automotive quality by advanced fail-operational safety and ISO 26262 compliance, modular and scalable technologies and lowered total cost of ownership. Space-saving approaches in SYS2WHEEL lead to more freedom for batteries, cargo and drivers.

    more_vert
  • Funder: European Commission Project Code: 101140226
    Overall Budget: 32,600,400 EURFunder Contribution: 10,288,900 EUR

    Cynergy4MIE is a visionary project poised to revolutionize Europe's industrial landscape by bridging the gap between foundational technology layers, cross-sectional technologies, and key application areas. The project addresses the pressing need for efficient resource utilization and synergy creation across ecosystems. By actively managing requirements from various key application areas, Cynergy4MIE aims to steer developments in foundational technology layers and cross-sectional technologies, enabling unparalleled collaboration and resource optimization. This approach promises faster time-to-market, efficient resource utilization, and enhanced technological exchange between key application areas. Cynergy4MIE's strategy aligns with the EU's agenda and emphasizes urgency, resilience, technological partnerships, and cross-domain integration to champion European competitiveness. The project's long-term impact rests on embracing urgency, fostering competitive resilience, strengthening technological partnerships, harnessing ecosystem synergies, promoting cross-domain integration, advancing AI competence, prioritizing sustainability, enhancing productivity, and ensuring user-centric digitalization while forming strategic alliances. Cynergy4MIE envisions a future where emergent cyber-physical systems serve human-centric needs, drive domain convergence, and secure Europe's position as a global technology leader.

    more_vert
  • Funder: European Commission Project Code: 783190
    Overall Budget: 50,293,700 EURFunder Contribution: 14,368,400 EUR

    The ambition of PRYSTINE is to strengthen and to extend traditional core competencies of the European industry, research and universities in smart mobility and in particular the electronic component and systems and cyber-physical systems domains. PRYSTINE's target is to realize Fail-operational Urban Surround perceptION (FUSION) which is based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments. Therefore, PRYSTINE's high-level goals are: 1. Enhanced reliability and performance, reduced cost and power of FUSION components 2. Dependable embedded control by co-integration of signal processing and AI approaches for FUSION 3. Optimized E/E architecture enabling FUSION-based automated vehicles 4. Fail-operational systems for urban and rural environments based on FUSION PRYSTINE will deliver (a) fail-operational sensor-fusion framework on component level, (b) dependable embedded E/E architectures, and (c) safety compliant integration of Artificial Intelligence (AI) approaches for object recognition, scene understanding, and decision making within automotive applications. The resulting reference FUSION hardware/software architectures and reliable components for autonomous systems will be validated in in 22 industrial demonstrators, such as: 1. Fail-operational autonomous driving platform 2. An electrical and highly automated commercial truck equipped with new FUSION components (such as LiDAR, Radar, camera systems, safety controllers) for advanced perception 3. Highly connected passenger car anticipating traffic situations 4. Sensor fusion in human-machine interfaces for fail-operational control transition in highly automated vehicles PRYSTINE’s well-balanced, value chain oriented consortium, is composed of 60 project partners from 14 different European and non-European countries, including leading automotive OEMs, semiconductor companies, technology partners, and research institutes.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.