Huawei Technologies R&D (UK) Ltd
Huawei Technologies R&D (UK) Ltd
2 Projects, page 1 of 1
assignment_turned_in Project2023 - 2025Partners:Cadence Design Systems Ltd, Synopsys - Glasgow, Xilinx (Ireland), Pragmatic Semiconductor Limited, Xilinx (Ireland) +6 partnersCadence Design Systems Ltd,Synopsys - Glasgow,Xilinx (Ireland),Pragmatic Semiconductor Limited,Xilinx (Ireland),Cadence Design Systems,Pragmatic Semiconductor Limited,QUB,Synopsys - Glasgow,Huawei Technologies R&D (UK) Ltd,Huawei Technologies R&D (UK) LtdFunder: UK Research and Innovation Project Code: EP/X039218/1Funder Contribution: 760,494 GBPElectech, covering areas such as sensors, power electronics, embedded computing, wireless communication technology, autonomous systems and large-area electronics, is predicted to play a foundational role in the future development of industries and value chains. It is central to Innovate UK's core strategy and its importance to future economic growth cannot be overstated. It is vital that the UK maintains a strong electronics design and technology base in the face of international developments. The proposed European chips act (February 2022), will mobilise 43 43 billion euros by 2030 in 'policy-driven investment' for the EU's semiconductor sector. The US CHIPS Act will result in a $280 billion investment to bolster their semiconductor capacity, catalyse R&D, create regional high-tech hubs and grow a more inclusive STEM workforce. The UK has a very vibrant but dispersed, electronic systems academic community, organised into larger activities in the universities of Glasgow, Imperial College London, Liverpool, Manchester, Newcastle, Sheffield, Southampton, University College London and Queen's University Belfast as well as satellite activities in a range of other universities. The community have been able to organise into an effective electronic systems community via the eFutures network (EPSRC eFutures2.0: Addressing Future Challenges grant, May2019-2023). In addition to growing the community, the objectives of the existing eFutures2.0 network had been to explore multidisciplinary opportunities for the sector. The successes of eFutures include: the organisation of 20+ in-person and online events (1825 attendees); the creation of a new website and a YouTube channel with 34 videoed talks (speakers from 19 countries) with a total of 1180 views; increased network membership by over 400% and move from a pure mailout model to include social media, achieving 64% of event attendees who had not previously engaged with the network; the delivery of two new, strategic landscaping reports: 'UK Landscape in AI & Brain-Inspired Computing Hardware' (Q4 2021) and 'Electronics for Healthcare: R&D across the UK' (expected Q1 2023). The 2021 Report had national media coverage, follow-up events (150 attendees), an upcoming, high-value proposal and a mention in the EPSRC Delivery Plan. The Healthcare Report results from online and in-person events (264 attendees) leading to a Programme Grant proposal. The network funded six multidisciplinary, concept projects (£78k), benefitting 11 academics across ten UK and four international universities; and delivered focussed engagement with 59 early-career and 30 mid-career researchers via two in-person workshops and online training. Ultimately, the aim is to further enhance the impact of UK electronics systems academic research and put the community in a strong, competitive position for collaboration with both national and international researchers, and industry. As highlighted above this will be achieved by continuing to build and growing network membership, organising the Net-Zero multidisciplinary event to engage our community more broadly in the area with other academic areas and companies to tackle this key topic, represent a strong focus on the electronics systems academic community in the UK, supporting early career researchers and growing the community by encouraging interaction or the national and international level and increasing the funding. We will achieve this by building on the successes of the eFutures2.0 activity with the same leadership team and steering group. The success and commitment to this activity is indicated by the in-kind commitment of £64,000 from our steering group companies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3a918d099213b95e037850f4dcd58382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3a918d099213b95e037850f4dcd58382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2029Partners:Eastern Academic Health Science Network, Bridgepoint (United Kingdom), Eastern Academic Health Science Network, EG Technology Ltd, National Physical Laboratory +35 partnersEastern Academic Health Science Network,Bridgepoint (United Kingdom),Eastern Academic Health Science Network,EG Technology Ltd,National Physical Laboratory,University of Cambridge,Owlstone Medical,Omnivision,eg technology Ltd,Nokia Bell Labs,LGC,University of Cambridge,NRBTech Ltd,Spiden AG,The Alan Turing Institute,PROCTER & GAMBLE TECHNICAL CENTRES LIMITED,Procter & Gamble Limited (P&G UK),The Alan Turing Institute,ASTRAZENECA UK LIMITED,Nokia Bell Labs,UNIVERSITY OF CAMBRIDGE,Spiden AG,Hitachi Cambridge Laboratory,Huawei Technologies R&D (UK) Ltd,Huawei Technologies R&D (UK) Ltd,Sony Precision Technology Europe GmbH,Wasatch Photonics Inc,Owlstone Medical,Unitive Design & Analysis Ltd,AstraZeneca plc,Cambridge Consultants (United Kingdom),AstraZeneca (United Kingdom),Cambridge Consultants Ltd,Wasatch Photonics (United States),NPL,Unitive Design and Analysis Ltd.,NRBTech Ltd,Omnivision,Sony Precision Technology Europe GmbH,Hitachi Cambridge LaboratoryFunder: UK Research and Innovation Project Code: EP/X037770/1Funder Contribution: 6,904,300 GBPVision: to drive and promote advances in optical biosensing capable of translation to low-cost monitoring, and to build a broad UK community in low-cost sensing for healthcare. Precision medicine tailors healthcare to individual patient characteristics. We are now entering a new era of precision health, which shifts towards healthy individuals, asking how we prevent disease with appropriate interventions, prolonging healthy lifespans. New challenges include the urgent need for precise technologies to monitor individuals throughout life, and for improved methods to interpret this wealth of data. Precision health demands new physical biosensors that are low-cost but elicit rich biochemical information and can be used outside the clinic. This frees up clinician-time and focusses scarce resources. It is vital to develop methods to extract/exploit downstream patient-specific information from the sensors. Current exemplars ('BioSensors 1.0') are wearable devices (such as Fitbit, Apple watch), which record only superficial parameters (eg. temperature, acceleration, blood oxygenation), while glucose/insulin sensors provide only very specific data; the major challenge of providing comprehensive analytical information with an affordable portable device remains key for healthcare. The SARS CoV-2 lateral flow tests popularised the notion of personalised disease testing and showed it can be a reality however they lack sensitivity, reliable and consistent interpretation, and robust reporting capabilities. The leading groups assembled here have a track record of pioneering optical approaches for new paradigms in the biosensing domain, from conception through to market. Together, they propose to synergistically explore the underpinning fundamental science of 'BioSensors 2.0' and develop key demonstrators that address clinical needs while building a broader UK community of academics, SMEs, institutes, & clinicians to drive this paradigm to real demonstrators. Current portable sensors are too simple and limited in their capability. Instead, we need to translate advanced lab-based technologies into portable devices. Systems aspects need care, while miniaturisation is challenging. Sensors should achieve multiplexing, use machine learning algorithms to interpret outcomes, auto-calibrate to ensure long term operation, survive changing conditions, and attain small-enough limits of detection required for various biofluids. This is a time-critical juncture, as other countries will start to develop in this space, though nothing explicitly exists yet- the NHS as the main UK provider may be a great driver. We also focus on community building, with targeted activities to ensure the UK is placed to capitalise on sensor developments. Through building a Big Idea 'Making Senses' for the Research Councils across the wider Sensors ecosystem, our team identified with EPSRC the lack of UK leadership and joined-up academia-industry-govt networks. Engaging with a wide range of stakeholders from SMEs to large entities (NPL, CPI, LGC, Turing..) and multinationals (P&G, AstraZeneca,..), we find strong appetite and market pull for new types of biosensors with application domains beyond the hospital, as well as industrial settings. New ways to leverage light-matter interactions (in which the is UK internationally strong) for realistic biodiagnostics demands a broad interdisciplinary research focus. This confluence aims to develop entirely new industries of the future, and to energise the UK interdisciplinary science base, which is vital over the next 50 years as we realise the new paradigm of BioSensors 2.0.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cfe7e9bee178725e1ce63d2ece0a7ac2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cfe7e9bee178725e1ce63d2ece0a7ac2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu