Powered by OpenAIRE graph

HIREF

HIREF SPA
Country: Italy
6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101136186
    Overall Budget: 7,197,630 EURFunder Contribution: 5,586,330 EUR

    Worldwide Data centers (DC) are estimated to account for 1 to 2% of electricity usage. Regarding the European context, it is expected that data centres will account for 98.5 TWh/year in 2030. So it is evident that there is an important potential to recover waste heat from the cooling processes of DCs. The THUNDER project aims to overcome existing barriers hampering a wide adoption of DCs waste heat recovery strategies, providing an innovative, efficient and cost attractive Seasonal Thermal storage based on Thermochemical Materials. THUNDER solutions stretch across the value chain (data centre innovative storage providers, heat pump manufacturers and district energy company operators). The THUNDER solutions will be validated in field conditions at the Demosite in Bulgaria where the practice of WHR from DC is not widely diffused thus boosting the market also in those areas. Deepened replicability assessment will be done and pre-feasibility analysis developed in 10 further Demosites across all over Europe. Co-design and training workshops will be organized at the replicability identified sites to promote stakeholders engagement and social awareness thus unlocking barriers and make it real THUNDER replication.

    more_vert
  • Funder: European Commission Project Code: 656889
    Overall Budget: 9,025,460 EURFunder Contribution: 7,136,660 EUR

    The Drilling technology that is currently used for installation of vertical borehole heat exchangers requires capital-intensive equipment that is expensive to mobilize, leads to deteriorated working conditions and requires experienced teams of specialist operatives. Drilling operations also often require significant quantities of drinking quality water and dispose of dirty water and mud. GEOT€CH will employ a different drilling concept that is based on dry auger methods that requires less capital-intensive equipment, enhances safety and avoids the environmental risks, complexity and costs of dealing with water supplies and contaminated waste. Another key concept of GEOT€CH will be a better integration between heat exchange elements during installation by developing an innovative heat exchanger allowing to achieve high levels of thermal performance with low pressure loss. This device employs a co-axial configuration and spiral fluid flow pathways to achieve low thermal resistance compared to conventional U-tube devices. Furthermore, GEOT€CH aims to implement cost-effective geothermal systems by alleviating the costs associated with drilling boreholes in large size buildings. The GEOT€CH’s approach seeks the maximum use of the foundation structures that are otherwise required, exclusively, for structural and geotechnical purposes in tertiary buildings. Foundation structures such as piles, screen walls and basement slabs will become effective geothermal heat exchangers in GEOT€CH. GEOT€CH will develop optimized hybrid solutions that will integrate the different geothermal systems in small and large buildings market. The optimization of geothermal system operation will be achieved with the Energy Management System and the development of a dual source heat pump capable of making optimal use of ground and/or air environmental heat sources. The GEOT€CH’s geothermal heating and cooling standard will be more attractive to design professionals and construction companies.

    more_vert
  • Funder: European Commission Project Code: 101096368
    Overall Budget: 6,981,700 EURFunder Contribution: 6,169,500 EUR

    The project’s goal is to develop and demonstrate novel modular, compact, high performances and Plug&Play thermal energy storage (TES) solutions for heating, cooling and hot tap water production. The new concept of TES proposed in the project will provide electricity load shifting with meaningful peak shaving of the thermal and electric load demands. Furthermore, the exploitation of renewable sources will be a key point of the new TES device considering at the same time the cost-effective results in terms of energy, costs and sustainability of the system. The project will provide a TES system able to store energy for heating and cooling in building applications for a period of at least four weeks. The novel TES system will be based on a closed-loop TCM reactor insulated by PCM and equipped with an ice storage, again integrated with PCM, for high cooling energy demand. The thermodynamic cycle has been designed to benefit from a further PCM thermal buffer tank, breaking through the closed-loop concept by compensating the energy for humidification with its latent heat. An advanced heat pump will be finally dedicated to the power conversion during the thermal charging process of reactor and PCMs storages, increasing the overall performance. A dedicated control system will be developed to operate the TES according to the energy production and the end-users’ requirements, adapting to the conditions of use according to the type of air conditioning system and the particular demand for domestic hot water. The TES solution will be adaptable to all the different possible European scenarios, in terms of energy policy and end-users’ requirements. It will be designed to be used both as integrated into the building heating system and in the smart electricity grid, or in buildings not connected to district heating and cooling network. Different characteristics of the system will be taken into account, ranging from storage efficiency and durability to cost reduction and LCA and LCCA.

    more_vert
  • Funder: European Commission Project Code: 218895
    more_vert
  • Funder: European Commission Project Code: 101136136
    Overall Budget: 12,396,900 EURFunder Contribution: 9,647,830 EUR

    Today, the heating sector is not on track toward achieving the IEA Net-Zero targets: it represents more than a third of the energy demand and it mainly relies on fossil fuels. District heating is recognized as a major solution allowing decarbonization of the heating sector. The integration of large-scale seasonal energy storage, compensating for the mismatch between supply and demand whilst ensuring the service, is key for a wide spread of district heating. USES4HEAT aims to demonstrate innovative, large-scale, seasonal thermal energy storage solutions enabling a future decarbonized and reliable heating supply. USES4HEAT demonstrates, at TRL8 and for a one-year test campaign, two innovative, cost-effective, large-scale, seasonal underground TES units to maximize the availability and resilience of heating supply while reducing energy losses and environmental impact. USES4HEAT seeks to demonstrate the storages as fully integrated units in commercial large-scale district heating networks and industrial waste heat recovery and fulfilling industrial thermal demand. In doing so, USES4HEAT also demonstrates six innovative key enabling components/technologies and their integration with seasonal storages: advanced drilling equipment and remotely controlled machines halving drilling times, innovative layered high-temperature borehole pipes, efficient groundwater heat pumps integrated with aquifer storages, hybrid solar panels and thermal solar collector, and accurate AI-based energy management tools. USES4HEAT will systematically demonstrate the effectiveness and techno-economic-social viability of innovative, large-scale, seasonal energy storages ensuring limited CAPEX, reduced environmental impact and energy losses, efficient integration in district heating and accumulation of various sources of heat, and granting reliable and decarbonized heating supply.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.