Powered by OpenAIRE graph

FIDAMC

FUNDACION PARA LA INVESTIGACION, DESARROLLO Y APLICACION DE MATERIALES COMPUESTOS
Country: Spain
32 Projects, page 1 of 7
  • Funder: European Commission Project Code: 945521
    Overall Budget: 112,809,000 EURFunder Contribution: 79,628,800 EUR

    The Airframe ITD aims at re-thinking and developing the technologies as building blocks and the “solution space” on the level of the entire or holistic aircraft: pushing aerodynamics across new frontiers, combining and integrating new materials and structural techniques – and integrating innovative new controls and propulsion architectures with the airframe; and optimizing this against the challenges of weight, cost, life-cycle impact and durability.

    more_vert
  • Funder: European Commission Project Code: 246243
    more_vert
  • Funder: European Commission Project Code: 881603
    Overall Budget: 149,703,008 EURFunder Contribution: 149,703,008 EUR

    This proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.

    more_vert
  • Funder: European Commission Project Code: 952792
    Overall Budget: 20,000,000 EURFunder Contribution: 20,000,000 EUR

    The 2D Experimental Pilot Line (2D-EPL) project will establish a European ecosystem for prototype production of Graphene and Related Materials (GRM) based electronics, photonics and sensors. The project will cover the whole value chain including tool manufacturers, chemical and material providers and pilot lines to offer prototyping services to companies, research centers and academics. The 2D-EPL targets to the adoption of GRM integration by commercial semiconductor foundries and integrated device manufacturers through technology transfer and licensing. The project is built on two pillars. In Pillar 1, the 2D-EPL will offer prototyping services for 150 and 200 mm wafers, based on the current state of the art graphene device manufacturing and integration techniques. This will ensure external users and customers are served by the 2D-EPL early in the project and guarantees the inclusion of their input in the development of the final processes by providing the specifications on required device layouts, materials and device performances. In Pillar 2, the consortium will develop a fully automated process flow on 200 and 300 mm wafers, including the growth and vacuum transfer of single crystalline graphene and TMDCs. The knowledge gained in Pillar 2 will be transferred to Pillar 1 to continuously improve the baseline process provided by the 2D-EPL. To ensure sustainability of the 2D-EPL service after the project duration, integration with EUROPRACTICE consortium will be prepared. It provides for the European actors a platform to develop smart integrated systems, from advanced prototype design to small volume production. In addition, for the efficiency of the industrial exploitation, an Industrial Advisory Board consisting mainly of leading European semiconductor manufacturers and foundries will closely track and advise the progress of the 2D-EPL. This approach will enable European players to take the lead in this emerging field of technology.

    more_vert
  • Funder: European Commission Project Code: 101148066
    Overall Budget: 3,785,720 EURFunder Contribution: 3,785,720 EUR

    The goal of ECORES WIND is to develop novel circular resin material systems tailored for composite structures in wind energy applications. These materials are intended to enhance circularity and minimize the environmental footprint of entire wind energy systems throughout their life cycles. The project seeks to tackle the ecological impact attributed to conventional resin systems used in wind turbine blades. It aims to explore alternative choices that facilitate enhanced circularity, prolonged lifespan, and efficient decommissioning. ECORES WIND will evaluate the ecological advantages inherent in each resin system it develops. By comparing them to state-of-the art materials in various categories, the project aims to ascertain improvements in recyclability, circularity, and the potential of bio-based products to achieve a more sustainable future. The introduction of circular resins in coordination with the use of advanced disassembly strategies will make the decommissioning of wind blades and reutilisation of materials for other applications possible and cost effective.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.