Indian Institute of Science IISc
Indian Institute of Science IISc
18 Projects, page 1 of 4
assignment_turned_in Project2014 - 2015Partners:IISc, Indian Institute of Science IISc, Northumbria University, Northumbria University, Carleton University +2 partnersIISc,Indian Institute of Science IISc,Northumbria University,Northumbria University,Carleton University,ICAR,Carleton UniversityFunder: UK Research and Innovation Project Code: AH/L008483/1Funder Contribution: 35,300 GBPThis research will create a truly innovative, international research network that will stretch far and wide in the area of "Cultures of Creativity and Innovation in Design". The international research network coordinating body comprises Professors Paul Rodgers and Paul Jones from Northumbria University, Professor Amaresh Chakrabarti, a world-leading researcher in Design Creativity, from the Centre for Product Design and Manufacturing at the Indian Institute of Science, Bangalore and Professor Lorenzo Imbesi, an internationally-acclaimed researcher in Design Culture, from the School of Industrial Design at Carleton University, Canada. The importance of creativity in the cultural, creative and other industries and the significant contributions that creativity adds to a nation's overall GDP and the subsequent health and wellbeing of its people cannot be overstated. In Europe, the value of the cultural and creative industries is estimated at well over 700 billion Euros each year, twice that of Europe's car manufacturing industry. The value of creativity and innovation, to any nation, is therefore huge. Creativity and innovation adds real value, which enables a number of benefits such as economic growth and social wellbeing. In many societies creativity epitomises success, excitement and value. Whether driven by individuals, companies, enterprises or regions creativity and innovation establishes immediate empathy, and conveys an image of dynamism. Creativity is thus a positive word in societies constantly aspiring to innovation and progress. In short, creativity in all of its manifestations enriches society. This network seeks to gain an understanding of this dynamic ecology that creativity and innovation bring to society. Creativity is a vital ingredient in the production of products, services and systems, both in the cultural industries and across the economy as a whole. Yet despite its importance and the ubiquitous use of creativity as a term there are issues regarding its definitional clarity. A better understanding and articulation of creativity as a concept and a process would support enhanced future innovation. Socio-cultural approaches to creativity explain that creative ideas or products do not happen inside people's heads, but in the interaction between a person's thoughts and a socio-cultural context. It is acknowledged that creativity cannot be taught, but that it can be cultivated and this has significant implications for a nation's design and innovation culture. It is known that creativity flourishes in congenial environments and in creative climates. This research will examine how creativity is valued, exploited, and facilitated across different national and cultural settings as all can have a major impact on a nation's creative potential. The key aim of this network is to investigate attitudes about creativity and how it is best cultivated and exploited across three different geographical locations (UK, India, and Canada), different environments, and cultures from both an individual designer's perspective and design groups' perspectives. The network seeks to investigate cultures of creativity and innovation in design and question its nature. For instance, can creativity be adequately conceptualised in a design context? What role do cultural organisations and national bodies play in harnessing creativity? Where do the "edges" lie between creativity and innovation? Do richer environments and approaches for facilitating creativity exist? What design skills, knowledge, and expertise are required for creativity? Moreover, what are the key drivers that motivate the creativity and innovation of designers and other stakeholders? Are they economical, cultural, social, or political? This research network will host 3 workshops, each one facilitating inquiry amongst invited design practitioners, researchers, educators and other stakeholders involved in design practice.
more_vert assignment_turned_in Project2016 - 2021Partners:IISc, Institute for in silico Medicine, Mosaiques Diagnostics AG, MOSAIQUES, Clyde Biosciences Ltd +33 partnersIISc,Institute for in silico Medicine,Mosaiques Diagnostics AG,MOSAIQUES,Clyde Biosciences Ltd,Medviso AB,M D Anderson Cancer Center,Institute for in silico Medicine,M D Anderson Cancer Center,NHS Golden Jubilee,SIEMENS PLC,University of Glasgow,Ninewells Hospital & Medical School,Medical University of Graz,University of Glasgow,Fios Genomics Ltd,Indian Institute of Science IISc,Dassault Systemes Simulia Corp,Graz University of Technology,Dassault Systemes Simulia Corp,Clyde Biosciences Ltd,Medical University of Graz,Medviso AB,UPB,University of Pittsburgh,LGC Ltd,Ansys Europe,Siemens plc (UK),NHS Greater Glasgow and Clyde,Ninewells Hospital & Medical School,ICAR,LGC,Golden Jubilee National Hospital,NHS Greater Glasgow and Clyde,ANSYS (International),University of Pittsburgh,Fios Genomics Ltd,NHS GREATER GLASGOW AND CLYDEFunder: UK Research and Innovation Project Code: EP/N014642/1Funder Contribution: 2,020,880 GBPIn the diagnosis and treatment of disease, clinicians base their decisions on understanding of the many factors that contribute to medical conditions, together with the particular circumstances of each patient. This is a "modelling" process, in which the patient's data are matched with an existing conceptual framework to guide selection of a treatment strategy based on experience. Now, after a long gestation, the world of in silico medicine is bringing sophisticated mathematics and computer simulation to this fundamental aspect of healthcare, adding to - and perhaps ultimately replacing - less structured approaches to disease representation. The in silico specialisation is now maturing into a separate engineering discipline, and is establishing sophisticated mathematical frameworks, both to describe the structures and interactions of the human body itself, and to solve the complex equations that represent the evolution of any particular biological process. So far the discipline has established excellent applications, but it has been slower to succeed in the more complex area of soft tissue behaviour, particularly across wide ranges of length scales (subcellular to organ). This EPSRC SoftMech initiative proposes to accelerate the development of multiscale soft-tissue modelling by constructing a generic mathematical multiscale framework. This will be a truly innovative step, as it will provide a common language with which all relevant materials, interactions and evolutions can be portrayed, and it will be designed from a standardised viewpoint to integrate with the totality of the work of the in silico community as a whole. In particular, it will integrate with the EPSRC MultiSim multiscale musculoskeletal simulation framework being developed by SoftMech partner Insigneo, and it will be validated in the two highest-mortality clinical areas of cardiac disease and cancer. The mathematics we will develop will have a vocabulary that is both rich and extensible, meaning that we will equip it for the majority of the known representations required but design it with an open architecture allowing others to contribute additional formulations as the need arises. It will already include novel constructions developed during the SoftMech project itself, and we will provide many detailed examples of usage drawn from our twin validation domains. The project will be seriously collaborative as we establish a strong network of interested parties across the UK. The key elements of the planned scientific advances relate to the feedback loop of the structural adaptations that cells make in response to mechanical and chemical stimuli. A major challenge is the current lack of models that operate across multiple length scales, and it is here that we will focus our developmental activities. Over recent years we have developed mathematical descriptions of the relevant mechanical properties of soft tissues (arteries, myocardium, cancer cells), and we have access to new experimental and statistical techniques (such as atomic force microscopy, MRI, DT-MRI and model selection), meaning that the resulting tools will bring much-need facilities and will be applicable across problems, including wound healing and cancer cell proliferation. The many detailed outputs of the work include, most importantly, the new mathematical framework, which will immediately enable all researchers to participate in fresh modelling activities. Beyond this our new methods of representation will simplify and extend the range of targets that can be modelled and, significantly, we will be devoting major effort to developing complex usage examples across cancer and cardiac domains. The tools will be ready for incorporation in commercial products, and our industrial partners plan extensions to their current systems. The practical results of improved modelling will be a better understanding of how our bodies work, leading to new therapies for cancer and cardiac disease.
more_vert assignment_turned_in Project2024 - 2026Partners:UCL, Indian Institute of Science IIScUCL,Indian Institute of Science IIScFunder: UK Research and Innovation Project Code: EP/Y000552/1Funder Contribution: 104,198 GBPThe discovery and design of new materials is critical for advancing the state-of-the-art in batteries, which in turn are required for advancing a range of carbon-emission reducing technologies such as renewable energy and electric vehicles. Experimental discovery of new materials is typically slow and costly, quantum mechanics (QM) calculations have brought computational materials design within reach. However, QM calculations are often limited to relatively small sets of materials, as their computational costs are too great for large-scale screening, this is the case for calculating properties required for new battery materials. New methods in machine learning (ML) have emerged as a powerful complementary tool to QM calculations - learning rules from data calculated from QM and applying cheap, efficient models to explore large chemical spaces. However, these ML models have hitherto been restricted to instances where relatively large datasets of QM properties (tens of thousands or more instances) are available for training the ML, thus limiting their utility. In this project we will combine the expertise of our two groups (ML for materials design and computational modelling of battery materials) to tackle this important issue by using the approach of transfer learning (TL). In TL a prior model trained on a large dataset but on an apparently different problem, is used as a foundation to learn on a new, smaller dataset of direct relevance to the battery problem. TL has been transformative in many other fields and with this project we aim to bring this potential to materials design in general and battery materials in particular.
more_vert assignment_turned_in Project2012 - 2016Partners:IISc, JIC, John Innes Centre, ICAR, BBSRC +1 partnersIISc,JIC,John Innes Centre,ICAR,BBSRC,Indian Institute of Science IIScFunder: UK Research and Innovation Project Code: BB/J020613/1Funder Contribution: 18,219 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
more_vert assignment_turned_in Project2019 - 2024Partners:LiU, UT, Penn State University College of Medicin, Toshiba Research Europe Ltd, Indian Institute of Science IISc +8 partnersLiU,UT,Penn State University College of Medicin,Toshiba Research Europe Ltd,Indian Institute of Science IISc,Russian Academy of Science Siberia,UCL,Hunter College CUNY,University of Electronic Science and Tec,Pennsylvania State University,Oak Ridge National Laboratory,Weizmann Institute of Science,National Physical Laboratory NPLFunder: UK Research and Innovation Project Code: MR/S015728/1Funder Contribution: 1,048,380 GBPClassically electrons in a three-dimensional solid can change their momentum in all possible directions. However, electrons in semiconductors can be manipulated so that they are constrained to move in lower dimensions. One of the perfect examples of such a system is a semiconductor heterostructure of GaAs/AlGaAs forming a plane of electrons, only a few nanometer thick, at its junction where electrons possessing quantised energy and freedom to change momentum in the plane. Such remarkable ensemble of non-interacting electrons is known as the two-dimensional electron gas (2DEG). The electrons in a 2DEG system are highly mobile and at low temperatures their motion is mainly scattering free due to the reduction in the interaction with lattice vibrations (phonons) and there is little impurity scattering. When the 2D electrons are electrostatically squeezed to form a narrow, 1D channel whose effective size is less than the electron mean free path for scattering then quantum phenomena associated with the electrons becomes resolved. In this situation, the energy of 1D electrons becomes quantised and discrete levels are formed. At a low carrier concentration of electrons, if the potential which is confining the 1D electrons is relaxed then electrons can arrange themselves into a periodic zig- zag manner forming a Wigner Crystal, named after Wigner who first predicted such a phenomenon in metal in 1936. Recently the distortion of a line of electrons into a zig-zag and then into two separate rows of electrons was observed and associated rich spin and charge phases. A very subtle change in confinement can result in two rows emerging from a zig-zag state which indicates that there is a narrow range where wavefunctions separate and form entangled states. Entanglement is a remarkable phenomenon in which a change in state of one electron will introduce a change in state of another. This amazing property forms the basis for quantum information processing with practical consequences related to quantum technologies, which will be investigated in this proposal. Another most important aspect of my Fellowship proposal is investigating the zig-zag regime or relaxed 1D system in search of fractional quantum states in the absence of a magnetic field. In the presence of a large magnetic field the energy of a 2DEG is quantized to form Landau levels which gave rise to two celebrated discoveries of the Integer and fractional quantum Hall effects in 1980 and 1982 respectively. Such unexpected revelations then pose a question whether fractional quantised states in the absence of any magnetic field in any lattice or topological insulators could ever be observed? However, there were no reports of observations of any fractional states without a magnetic field until the recent discovery of fractional charges of e/2 and e/4 arising from the relaxed zig-zag state in a Germanium-based 1D system. The proposal is inspired by this and the recent experimental finding of non-magnetic self-organised fractional quantum states in tradition GaAs based 1D quantum wires, which was completely unanticipated. The research aim is to introduce new insights, and new aspects of quantum physics, by exploiting the interaction effects in low-dimensional semiconductors by manipulating electron wavefunctions in a controllable manner to allow technological exploitation of basic quantum physics. The major challenges to be investigated: spin and charge manipulation, demonstrating electron entanglement and detection, mapping self-organised fractional states and their spin states, controlled manipulation and detection of hybrid fractional states and establishing if they are entangled. This research proposal opens up a new area in the quantum physics of condensed matter with the generation of Non-Abelian fractions which can be used in a Topological Quantum Computation scheme.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right
