Oxford Ionics
Oxford Ionics
4 Projects, page 1 of 1
assignment_turned_in Project2023 - 2025Partners:Riverlane, Quantum Motion, Oxford Ionics, Universal Quantum Ltd, Duality Quantum Photonics Ltd +2 partnersRiverlane,Quantum Motion,Oxford Ionics,Universal Quantum Ltd,Duality Quantum Photonics Ltd,National Quantum Computing Centre,University of OxfordFunder: UK Research and Innovation Project Code: EP/Y004655/1Funder Contribution: 312,190 GBPThe project Software Enabling Early Quantum Advantage (SEEQA, pronounced 'seeker') is a joint effort by Oxford, UCL, and Bristol, supported by multiple UK quantum startup companies and NQCC. The aim is to make the era of "quantum advantage" arrive sooner! "Advantage" means having real working quantum computers that can perform tasks that are either impossible, or prohibitively slow or expensive, by any conventional means. We'll know this era has arrived when we can solve otherwise-infeasible tasks in areas such as chemistry and materials discovery or in solving complicated resource allocation problems with near-zero waste. Although quantum computers have long promised this kind of advantage, it has not yet been realised. There are many reasons -- partly it is just that the prototype hardware needs more time to mature. But progress needs to be made in the practical theory to support quantum computing, to 'lower the bar' that the hardware needs to be able to reach. This is what SEEQA will do, in three main themes: 1. Figuring out how best to use state-of-the-art conventional computing power to help early quantum computers. There are two main ways: First, the conventional computers can actually help run the task that the quantum computer is performing. The task gets broken up into lots of small quantum computations, and the conventional computer gets all the results and puts them together to decide what to do next. The other way a conventional computer can help is by monitoring the quantum processor for errors: there is some detective work to do in order to infer the nature of the errors from the evidence that comes from monitoring, and a conventional computer needs to do this -- it's called decoding. 2. Coming up with new ways in which to handle or suppress errors. As mentioned, quantum computers (especially the early ones) suffer from 'noise' which means little imperfections in everything that is done. If not handled, the resulting errors will lead to useless outputs. There are many ideas for fighting errors, but SEEQA will address new possibilities. In particular, SEEQA will investigate the interface between two major approaches to find new solutions: The approaches are called Quantum Error Mitigation (QEM), which suppresses error damage, and Quantum Error Correction (QEC) which can totally fix errors but is currently very expensive in terms of number of components needed. Also, SEEQA will explore and advance some of the more recent and sophisticated ideas for handling measurement errors -- if you can't trust the output of the quantum computer you are very limited! 3. Finally, SEEQA will focus on the interrelationship between the architecture or protocol we would like to perform, and the available hardware architecture (including noise sources and other imperfections, the 'topology' which means the question of which qubits can directly 'see' other qubits, and so on). Although quite a bit is known about this, there remain a great many questions within the two themes (a) "what algorithms can run well on my architecture?", and (b) "what architectures can my algorithm run on?" Underpinning all this theoretical research, it will be vital to be able to test things out. The SEEQA project will have two kinds of provision: First, very efficient software that runs on conventional computers to 'pretend' to be quantum computers - exactly simulating them using the well-known laws of quantum physics. However it will only ever be possible to work with small emulated quantum computers because the quantum state is so complex. So it is vital that SEEQA also has access to real prototype quantum processors -- and as many as possible because they are various types. Fortunately SEEQA has multiple letters of support, offering resources approaching £500k, from pioneering UK hardware companies that have working quantum prototypes right now. They will make available their experts and their devices to SEEQA in order to help us to succeed.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8b9c1045abcd5514e51250f32a6aafe4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8b9c1045abcd5514e51250f32a6aafe4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:SeeQC UK, UCL, National Physical Laboratory, Riverlane, Quantinuum +19 partnersSeeQC UK,UCL,National Physical Laboratory,Riverlane,Quantinuum,Nu Quantum,Keysight Technologies,ZURICH INSTRUMENTS AG,BT plc,Quantum Motion,National Quantum Computing Centre,Oxford Instruments (United Kingdom),Universal Quantum Ltd,Amazon Web Services EMEA SARL,PASQAL,Oxford Ionics,PhaseCraft Ltd,IBM UNITED KINGDOM LIMITED,Oxford Quantum Circuits,IQM,Bluefors Oy,THALES UK LIMITED,Toshiba Europe Limited (UK),Quandela SASFunder: UK Research and Innovation Project Code: EP/Y035046/1Funder Contribution: 8,340,420 GBPThe primary objective of the QC2 CDT is to train the upcoming generation of pioneering researchers, entrepreneurs, and business leaders who will contribute to positioning the UK as a global leader in the quantum-enabled economy by 2033. The UK government and industry have demonstrated their commitment by investing £1 billion in the National Quantum Technologies Programme (NQTP) since 2014. In its March 2023 National Quantum Strategy document, the UK government reaffirmed its dedication to quantum technologies, pledging £2.5 billion in funding over the next decade. This commitment includes the establishment of the UKRI National Quantum Computing Centre (NQCC). The fields of quantum computation and quantum communications are at a pivotal juncture, as the next decade will determine whether the long-anticipated technological advancements can be realized in practical, commercially-viable applications. With a wide-ranging spectrum of research group activities at UCL, the QC2 CDT is uniquely situated to offer comprehensive training across all levels of the quantum computation and quantum communications system stacks. This encompasses advanced algorithms and quantum error-correcting codes, the full range of qubit hardware platforms, quantum communications, quantum network architectures, and quantum simulation. The QC2 CDT has been co-developed through a partnership between UCL and a network of UK and international partners. This network encompasses major global technology giants such as IBM, Amazon Web Services and Toshiba, as well as leading suppliers of quantum engineering systems like Keysight, Bluefors, Oxford Instruments and Zurich Instruments. We also have end-users of quantum technologies, including BT, Thales, NPL, and NQCC, in addition to a diverse group of UK and international SMEs operating in both quantum hardware (IQM, NuQuantum, Quantum Motion, SeeQC, Pasqal, Oxford Ionics, Universal Quantum, Oxford Quantum Circuits and Quandela) and quantum software (Quantinuum, Phase Craft and River Lane). Our partners will deliver key components of the training programme. Notably, BT will deliver training in quantum comms theory and experiments, IBM will teach quantum programming, and Quantum Motion will lead a training experiment on semiconductor qubits. Furthermore, 17 of our partners will co-sponsor and co-supervise PhD projects in collaboration with UCL academics, ensuring a strong alignment between the research outcomes of the CDT and the critical research objectives of the UK quantum economy. In total the cash and in-kind contributions from our partners exceed £9.1 million, including £2.944 million cash contribution to support 46 co-sponsored PhD studentships. QC2 will provide an extensive cohort-based training programme. Our students will specialize in advanced research topics while maintaining awareness of the overarching system requirements for these technologies. Central to this programme is its commitment to interdisciplinary collaboration, which is evident in the composition of the leadership and supervisory team. This team draws expertise from various UCL departments, including Chemistry, Electronics and Electrical Engineering, Computer Science, and Physics, as well as the London Centre for Nanotechnology (LCN). QC2 will deliver transferable skills training to its students, including written and oral presentation skills, fostering an entrepreneurial mindset, and imparting techniques to maximize the impact of research outcomes. Additionally, the programme is committed to taking into consideration the broader societal implications of the research. This is achieved by promoting best practices in responsible innovation, diversity and inclusion, and environmental impact.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2029Partners:Applied Quantum Computing, IBM UNITED KINGDOM LIMITED, Riverlane, Oxford Quantum Circuits, BAE Systems (UK) +23 partnersApplied Quantum Computing,IBM UNITED KINGDOM LIMITED,Riverlane,Oxford Quantum Circuits,BAE Systems (UK),AstraZeneca (Global),ORCA Computing Ltd,ROLLS-ROYCE PLC,QuantrolOx,Airbus,Oxford Ionics,M Squared Lasers (United Kingdom),THALES UK LIMITED,Amazon Web Services EMEA SARL,Digital Catapult,Qubits Ventures,QinetiQ,BT plc,Quantum Base Alpha,LTIMindtree,University of Oxford,DEPARTMENT FOR TRANSPORT,Trakm8 Ltd,Quantinuum,Oracle Corporation U K Ltd,Atomic Weapons Establishment,Infleqtion,CGI GlobalFunder: UK Research and Innovation Project Code: EP/Z53318X/1Funder Contribution: 21,348,400 GBPOver the next few decades, quantum computing (QC) will transform the way we design new materials, plan complex logistics and solve a wide range of problems that conventional computers cannot address. The Hub for Quantum Computing via Integrated and Interconnected Implementations (QCI3) brings together >50 investigators across 20 universities to address key challenges, and deliver applications across diverse areas of engineering and science. We will work with 27 industrial partners, the National Quantum Computing Centre, the National Physical Laboratory, academia, regulators, Government and the wider community to achieve our goals. The Hub will focus on where collaborative academic research can make transformative progress across three interconnected themes: (T1) developing integrated quantum computers, (T2) connecting quantum computers, and (T3) developing applications for them. Objectives for each are outlined below. (T1) Developing integrated quantum computing systems, with a goal of creating quantum processors that will show real utility for specific problem examples. Objectives: OB1.1: Demonstrate quantum advantage in analogue platforms with neutral atoms and photons OB1.2: Make neutral atom quantum simulation platforms available in the cloud OB1.3: Develop new applications for these and other near-term systems (T2) A key challenge of building the million qubit machines of the future is that of 'wiring' together the quantum processors that will create such a machine. The Hub will develop technologies that help achieve this and develop models to understand how such machines will scale. Objectives : OB2.1: Develop interconnect technologies for quantum processors OB2.2: Demonstrate blind computing and multi-component networks with trapped ion quantum computers OB2.3: Demonstrate transduction and networking of superconducting processors (T3) Developing applications in science and engineering, including materials design, chemistry and fluid dynamics. Objectives: OB3.1: Develop new methods for materials and chemical system modelling and design, fluid dynamics, and quantum machine learning OB3.2: Identify the nearest routes to quantum advantage for these application areas OB3.3: Develop implementations of these algorithms on T1 and T2 Hardware These will be supported by work in overarching tools (T4) that can be used across the themes of the Hub, including error correction, digital twins, verification and software stack optimisation. Skills and training Hub partners will work with end-users, our students and researchers, and partners across the UK National Quantum Technologies Programme (UKNQTP) to ensure members of the Hub have the skills they need. Specific objectives include: Provide training in innovation, commercialisation and IP, Equality, Diversity and Inclusion and Responsible Research and Innovation (RRI) to Hub partners Provide reports and training to end-users, working in partnership with the NQCC and others Continue to provide advocacy and advice to policy makers, through work in such areas as RRI Exploitation and Engagement: The Hub will build on the strong engagement activities of the UK programme, further developing the technology pipeline. We will play a key role in strengthening and expanding the UK ecosystem through events, networking and education. Specific goals are to: Broaden the partnership of the Hub, bringing new academic, government and industrial partners into the Hub network Contribute to regulation and governance through programmes of work in standards and RRI, and close collaboration with UKNQTP partners Support the generation and protection of intellectual property within the Hub, and its exploitation Develop Hub and cross-Hub outreach initiatives, working with the RRI team, to help ensure the potential of quantum computing for societal benefit can be realised
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ae1295534898e041d0b28960d29bf974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ae1295534898e041d0b28960d29bf974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2032Partners:Riverlane, The MathWorks Inc, National Physical Laboratory, BAE Systems, CMC Microsystems +46 partnersRiverlane,The MathWorks Inc,National Physical Laboratory,BAE Systems,CMC Microsystems,Nuvu Cameras Inc.,York Probe Sources Ltd,Oxford Instruments Plasma Technology,Japan Advanced Institute of Science and Technology,University of Southampton,Lumai Ltd,G&H Torqay,Menlo Systems (Germany),Nvidia (United States),Qinetiq (United Kingdom),QuiX Quantum B.V.,Attocube Systems (Germany),Quandela SAS,ADS Group,NKT Holding (Denmark),Element Six (UK) Ltd,ACD/Labs,Optica,JEOL (United Kingdom),ZURICH INSTRUMENTS AG,Aquark Technologies,Analog Devices (United States),AegiQ,Universal Quantum Ltd,QLM TECHNOLOGY LTD,Keysight Technologies (United States),Bruker BioSpin,Photonic Solutions Plc,National Institute R&D Microtechnologies,Quantum Detectors,Technology Partnership (United Kingdom),ORCA Computing Ltd,NIMS,Quantum Dice,Quantemol (United Kingdom),Comsol (United Kingdom),Merqury Cybersecurity,Loxham Precision,Atomic Weapons Establishment,Unitary Fund,Xanadu,Duality Quantum Photonics Ltd,THALES UK LIMITED,Toshiba Europe Limited (UK),Chemring Technology Solutions (United Kingdom),Oxford IonicsFunder: UK Research and Innovation Project Code: EP/Y035267/1Funder Contribution: 7,844,490 GBPQuantum technologies exploit the intriguing properties of matter and light that emerge when the randomizing processes of everyday situations are subdued. Particles then behave like waves and, like the photons in a laser beam, can be split and recombined to show interference, providing sensing mechanisms of exquisite sensitivity and clocks of exceptional accuracy. Quantum measurements affect the systems they measure, and guarantee communication security by destroying cryptographic keys as they are used. The entanglement of different atoms, photons or circuits allows massively powerful computation that promises complex optimizations, ultrafast database searches and elusive mathematical solutions. These quantum technologies, which EPSRC has declared one of its four Mission-Inspired priorities, promise in the near future to stand alongside electronics and laser optics as a major technological resource. In this 'second quantum revolution', a burgeoning quantum technology industry is translating academic research and laboratory prototypes into practical devices. Our commercial partners - global corporations, government agencies, SMEs, start-ups, a recruitment agency and VC fund - have identified a consistent need for hundreds of doctoral graduates who combine deep understanding of quantum science with engineering competence, systems insight and a commercial head. With our partners' guidance, we have designed an exciting programme of taught modules to develop knowledge, skills and awareness beyond the provision of traditional science-focused PhD programmes. While pursuing leading-edge research in quantum science and engineering, graduate students in the EPSRC CDT for Quantum Technology Engineering will follow a mix of lectures, practical assignments and team work, peer learning, workshops, and talks by our commercial partners. They will strengthen their scientific and engineering capabilities, develop their computing and practical workshop skills, study systems engineering and nanofabrication, project and risk management and a range of commercial topics, and receive professional coaching in communication and presentation. An industrial placement and extended study visit will give them experience of the commercial environment and global links in their chosen area, and they will have support and opportunities to break their studies to explore the commercialization of research inventions. A QT Enterprise Club will provide fresh, practical entrepreneurship advice, as well as a forum for local businesses to exchange experience and expertise. The CDT will foster an atmosphere of team working and collaboration, with a variety of group exercises and projects and constant encouragement to learn from and about each other. Students will act as mentors to junior colleagues, and be encouraged to take an active interest in each other's research. They will benefit from the diversity of their peers' backgrounds, across not just academic disciplines but also career stages, with industry secondees and part-time students bringing rich experience and complementary expertise. Students will draw upon the wealth of experience, across all corners of quantum technologies and their underpinning science and techniques, provided by Southampton's departments of Physics & Astronomy, Engineering, Electronics & Computer Science, Chemistry and its Optoelectronics Research Centre. They will be given training and opening credit for the Zepler Institute's nanofabrication facilities, and access to the inertial testing facilities of the Institute of Sound & Vibration research and the trials facilities of the National Oceanography Centre. Our aim is that graduates of the CDT will possess not only a doctorate in the exciting field of quantum technology, but a wealth of knowledge, skills and awareness of the scientific, technical and commercial topics they will need in their future careers to propel quantum technologies to commercial success.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2ab581fa0e74c893d39ffd01d8a3bd92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2ab581fa0e74c893d39ffd01d8a3bd92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu