Powered by OpenAIRE graph

Jaguar Cars Limited and Land Rover

Country: United Kingdom

Jaguar Cars Limited and Land Rover

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/K018108/1
    Funder Contribution: 1,707,190 GBP

    Manufacturing involves only three types of processes - adding, changing or removing material. 'Metal Bashing' - changing the shape of metal components without removal or additions - is easily over-looked or even derided as the 'ugly duckling' of manufacturing technology, yet continues to be central to UK manufacturing, and always will be: jet engines, medical scanners, cars, high-rise offices and contemporary industrial equipment all depend on metal forming, both to define component geometries and to create the properties such as strength and toughness which determine product performance. Despite great excitement over additive processes such as 3D printing, metal forming will never be replaced, because the high-performance properties of steel, wrought aluminium and other key metals can only be developed as a result of careful control of deformation and temperature over time. Globally we use 25 times more steel than any other metal - in the UK our consumption drives production of 500kg of steel per person per year - and every steel product has been shaped by several metal forming processes. Inevitably, metal forming processes are therefore central to the production of a third of all manufactured exports from the UK which are in total worth over £75bn. However, the tools required for forming metal components are custom-made for each application at great cost, so metal forming is often expensive unless used in mass production, yet the drivers for development of future high-value UK manufacturing require increased flexibility and smaller batch sizes without sacrificing either the accuracy or properties of metal parts. In the past twenty years, several research labs around the world have responded to this challenge and explored the design and development of novel flexible metal forming equipment. However these processes have largely failed to move from the lab into industrial use, due to a lack of precision and a failure to guarantee product microstructure and properties. Recent developments in sensors, actuators, control theory and mathematical modelling suggest that both problems could potentially be overcome by use of closed-loop control, and in work leading to this proposal, we have demonstrated the first online use of a stereo-vision camera in a flexible sheet metal forming process to provide the feedback needed to control the final shape of the sheet precisely. This has shown us that closed-loop control of forming is possible and valuable, but involves a trade-off between product quality, process flexibility and production speed. This proposal therefore brings together four disciplines, previously un-connected in the area of flexible forming, to explore this trade-off and develop the key knowledge underpinning future development of commercially valuable flexible metal forming equipment: mechanical design of novel equipment; control-engineering in both time and space; materials science of metal forming; fast mathematical process modelling. At the heart of our proposal is the ambition to link design, metallurgy and modelling to control engineering, in order to identify the opportunity for developing and applying flexible forming, and to demonstrate it in practice in four well focused case-studies. The proposal comes with £1.2m gearing, including support for five PhD students to work within the project, and substantial commitments of time and trials from Siemens Metals Technologies, Firth Rixson and Jaguar Land Rover. The outcomes of the work will be communicated through publications, demonstrations, workshops for both industry and academic developers, and through an edited book.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E501311/1
    Funder Contribution: 4,142,430 GBP

    We group our doctoral programme under six key areas of Complexity Science:agent-based modelling;networks and emergent behaviour;self-organisation and assembly;nonlinear dynamics and modelling in the presence of noise;spatio-temporal complexity, quantification and modelling;management and bounding of complexity.The development of these themes and applications proposed within them addresses societal, financial and technical performance at the system level, key for national competitiveness. Particular key current societal problems are also addressed, such as crime, terrorism, epidemics, computer viruses, and understanding how to control their spread.We propose medically related projects of clear importance to the NHS (diabetes, back pain, consultation effectiveness), financial applications address the effective management of UK markets and financial intervention, and we include a diverse range of environmental interests for the UK, from habitats to our skies and space weather. Our neuro-related network projects and intelligent agent and trusted agent researches relate to close UK priorities identified by DTI Foresight programme, and we also look to longer term possibilities such as self-assembling molecular-scale technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K503241/1
    Funder Contribution: 2,566,790 GBP

    The dramatic changes in global manufacturing have greatly increased the demand from UK companies for skilled employees and new operational practices that will deliver internationally leading business positions. The UK is considered to be very strong both in scientific research and in the invention of innovative products within emerging sectors. This conclusion is supported by the fact the UK is a significant net exporter of intellectual property, ranking behind only USA and Japan. The potential of the UK's innovation capacity to create new high-end manufacturing jobs is therefore significant. Maximising this wealth generation opportunity within the UK will however depend on the creation of a new breed of skilled personnel that will deliver next generation innovative production systems. Without relevant research training, production research, r&d infrastructure, and an effective technology supply chain, there will be a limit to the UK's direct employment growth from its innovation capacity, leading to constant migration of UK wealth creation potential into overseas economies. Many emerging sectors and next generation products will demand large-scale ultra precision (nanometre-level tolerance) complex components. Such products include: 1) Next generation displays (flexible or large-scale), activated and animated wall coverings, 3D displays, intelligent packaging and innovative clothing ; 2) Plastic electronic devices supporting a range of low cost consumer products from food packaging to hand held devices; 3) Low cost photovoltaics, energy management and energy harvesting devices; and 4) Logistics, defence and security technologies through RFID and infrared systems. The EPSRC Centre in Ultra Precision is largely founded on the support of SMEs. It is widely acknowledged that manufacturing employment growth in developed manufacturing economies will stem from SMEs and emerging sectors . The supply of highly trained ultra precision engineers to UK manufacturing operations is therefore critically important in order to deliver benefit from any new technologies that arise from the industrial or academic research base within the EPSRC Centre in Ultra Precision.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I038586/1
    Funder Contribution: 3,012,030 GBP

    Hybrid electric vehicles (HEV) are far more complex than conventional vehicles. There are numerous challenges facing the engineer to optimise the design and choice of system components as well as their control systems. At the component level there is a need to obtain a better understanding of the basic science/physics of new subsystems together with issues of their interconnectivity and overall performance at the system level. The notion of purpose driven models requires models of differing levels of fidelity, e.g. control, diagnostics and prognostics. Whatever the objective of these models, they will differ from detailed models which will provide a greater insight and understanding at the component level. Thus there is a need to develop a systematic approach resulting in a set of guidelines and tools which will be of immense value to the design engineer in terms of best practice. The Fundamental Understanding of Technologies for Ultra Reduced Emission Vehicles (FUTURE) consortium will address the above need for developing tools and methodologies. A systematic and unified approach towards component level modelling will be developed, underpinned by a better understanding of the fundamental science of the essential components of a FUTURE hybrid electrical vehicle. The essential components will include both energy storage devices (fuel cells, batteries and ultra-capacitors) and energy conversion devices (electrical machine drives and power electronics). Detailed mathematical models will be validated against experimental data over their full range of operation, including the extreme limits of performance. Reduced order lumped parameter models are then to be derived and verified against these validated models, with the level of fidelity being defined by the purpose for which the model is to be employed. The work will be carried out via three inter-linked work packages, each having two sub-work packages. WP1 will address the detailed component modelling for the energy storage devices, WP2 will address the detailed component modelling for the energy conversion devices and WP3 will address reduced order modelling and control optimisation. The tasks will be carried out iteratively from initial component level models from WP1 and WP2 to WP3, subsequent reduced order models developed and verified against initial models, and banks of linear-time invariant models developed for piecewise control optimisation. Additionally, models of higher fidelity are to be obtained for the purpose of on-line diagnosis. The higher fidelity models will be able to capture the transient conditions which may contain information on the known failure modes. In addition to optimising the utility of healthy components in their normal operating ranges, to ensure maximum efficiency and reduced costs, further optimisation, particularly at the limits of performance where component stress applied in a controlled manner is considered to be potentially beneficial, the impact of ageing and degradation is to be assessed. Methodologies for prognostics developed in other industry sectors, e.g. aerospace, nuclear, will be reviewed for potential application and/or tailoring for purpose. Models for continuous component monitoring for the purpose of prognosis will differ from those for control and diagnosis, and it is envisaged that other non-parametric feature-based models and techniques for quantification of component life linked to particular use-case scenarios will be required to be derived. All members of the consortia have specific individual roles as well as cross-discipline roles and interconnected collaborative activities. The multi-disciplinary nature of the proposed team will ensure that the outputs and outcomes of this consortia working in close collaboration with an Industrial Advisory Committee will deliver research solutions to the HEV issues identified.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I015507/1
    Funder Contribution: 1,248,000 GBP

    Underinvestment in Manufacturing in the UK over the past decade has left this vital pillar of the economy exposed. OECD statistics show this starkly when comparing the UK to competitors whose sectors have grown since the start of the new millennium - the UK has- The largest proportion of low technology companies - The lowest proportion of employees in manufacturing- The lowest R & D spend as a function of GDP- The highest wage costs when compared to productivity.The recent economic crisis has highlighted the UK's over dependence on the financial services sector. Countries such as France and Germany with larger and growing manufacturing bases both emerged from the global recession more rapidly than the UK. This gap in support for the manufacturing sector has been recognised by EPSRC who made provisions to stimulate new IMRCs and doctorate training centres which can support UK manufacturing through close collaboration with the science base at universities.MATTER is a new initiative at Swansea specifically targeted at high technology advanced manufacturing and exploits the considerable experience of running industry facing doctorate centres at Swansea University. MATTER will be run in the multidisciplinary research environment provided in the School of Engineering at Swansea spanning all three research centres - computational, materials and nanotechnology. It will be led by a team of highly experienced researchers representing a wide range of expertise across the centres. Swansea has been a pioneer of the EngD concept since its inception in 1992. The award winning research and training partnerships continue with two highly focused doctoral training partnerships for the steel industry in Wales and for structural metallic systems for gas turbines. Swansea is also the lead organisation on the ERDF funded project ASTUTE to support Advanced Sustainable Manufacturing Technologies in Wales with postdoctoral research and extensive knowledge transfer activities from academia to industry. Manufacturing also strongly features in the HEFCW funded project to establish ArROW, an Aerospace Research Organisation Wales, which is led by Swansea University. The latter is to build research capacity, but it lacks funds for the critical element of doctoral students to more extensively engage with industry.In analysing technical roadmapping documents from the packaging and the aerospace industries, and the portfolio of support offered to manufacturing industries, Swansea University has identified key gaps and opportunities to work with the supply chains in Packaging, Automotive and Aerospace specifically outside of the EU convergence areas covered by existing funding. Within these technology clusters are key cross cutting themes, lean principles, sustainability, and value added. The gap in support will be filled through the generation of an advanced manufacturing centre that will train a minimum of 26 engineering doctorate research engineers, adding value to the training schemes already in place to service the Welsh convergence regions. MATTER will concentrate on increasing the intellectual value of the products and processes in order to add value through innovation, decreasing the commodity element of much of the UK sector. A key area of focus for MATTER will be improving processes to minimise waste and to improve quality.The existing infrastructure at Swansea University will underpin MATTER maximising the number of students that can be trained. Swansea will contribute 56% of the fees along with the provision of training costs and administration support from within their extensive infrastructure build up around several large scale projects, such as STRIP, ASTUTE and ArROW. Industry will also make a considerable additional contribution both in terms of in kind support and cash. The combined contribution from industry and Swansea University to MATTER will provide approximately 2 for every 1 requested from EPSRC.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.