Powered by OpenAIRE graph

AGM Batteries Ltd

AGM Batteries Ltd

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S000933/1
    Funder Contribution: 776,253 GBP

    The cost of Li-ion batteries (LIBs) is presently the largest barrier to the electrification of road transport. Battery pack cost needs to be halved to $125/kWh (USABC target) in order to get electric vehicles (EVs) ready for mass market penetration by 2040, thereby helping the UK to meet its legislated emission reduction target of 80% for 2050. Meanwhile, the energy and power density of LIBs also need to be significantly increased to reduce the consumers' range anxiety. Transport in the electrolyte plays a key role in determining the cost, performance and lifetime of a LIB cell, and can be linked to all the above key barriers to mass EV adoption. Particularly, transport in the electrolyte has been found to become the major limiting mechanism to the high-power operation of LIBs, as well as to the pursuit of thick electrodes which is being widely considered as a near-term solution to energy density increase and cost reduction for EV batteries. However, the present LIB designs with static electrolytes provide little room for improving and engineering the electrolyte-side transport processes. Therefore, radical innovations in the engineering design of LIB cells are urgently needed to address the electrolyte-side limitations to meet ever fast increasing performance of electrode active materials. Relying on the unique features of microfluidics including easy integration, rapid heat and mass transfer and precision control, this Fellowship aims to develop a novel microfluidic-based approach to engineering the transport processes in the electrolyte of LIBs, with the goal of improving cell energy and power density and reducing cost. To achieve this aim, the Fellowship will first combine integrated microfluidics and fluorescence microscopy to develop an easily accessible, multiscale, multichannel tool for characterising the coupled thermal-hydro-electrochemical dynamics and its interplay with electrode microstructures in a LIB cell during operation, underpinning further technological innovations. The Fellowship will then conduct a systematic model-based parametric study to develop directional microfluidic designs for LIB cells and to develop microfluidic principles for manipulating the fluid flow, local composition, temperature and electrochemical processes in the new cell design for optimal performance. The Fellowship will finally explore high-efficiency upscaling strategies for the new cell design and analyse their economic feasibilities for EV applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S001239/1
    Funder Contribution: 552,518 GBP

    Electrical energy storage can contribute to meeting the UK's binding greenhouse emission targets by enabling low carbon transport through electric vehicles (EVs) in the expanding electric automotive industry. However, challenges persist in terms of performance, safety, durability and costs of the energy storage devices such as lithium ion batteries (LIBs). Although there has been research in developing new chemistry and advanced materials that has significantly improved electrical energy storage performance, the structure of the electrodes and LIBs and their manufacturing methods have not been changed since the 1980s. The current manufacturing methods do not allow control over the structures at the electrode and device levels, which leads to restricted ion transport during cycling. The approach of this research is to develop a complete materials-manufacture-characterisation chain for LIBs, solid-state LIBs (SSLIBs) and next generation of batteries. Novel structures at the electrode and device levels will be designed to promote fast directional ion transport, increase energy and power densities, improve safety and cycling performance and reduce costs. New, scalable manufacturing techniques will be developed to realise making the designed structures and reduce interfacial resistance in SSLIBs. Finally, state-of-the-art physical and chemical characterisation techniques including a suite of X-ray photoelectron spectroscopy (XPS), X-ray computed tomography (XCT) and electrochemical testing will be used to understand the underlining charge storage mechanism, interfacial phenomena and how electrochemical performance is influenced by structural changes of the energy storage devices. The results will subsequently be used to guide iterations of the structure design. The fabricated batteries will be packaged into pouch cells and rigorously tested by EV protocols through close collaborations with industry to ensure flexible adaptability to the current industry match to create near-term high impact in industry. The commercialisation strategy is to license developed intellectual property (IP) to material and battery manufacturers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S001239/2
    Funder Contribution: 328,778 GBP

    Electrical energy storage can contribute to meeting the UK's binding greenhouse emission targets by enabling low carbon transport through electric vehicles (EVs) in the expanding electric automotive industry. However, challenges persist in terms of performance, safety, durability and costs of the energy storage devices such as lithium ion batteries (LIBs). Although there has been research in developing new chemistry and advanced materials that has significantly improved electrical energy storage performance, the structure of the electrodes and LIBs and their manufacturing methods have not been changed since the 1980s. The current manufacturing methods do not allow control over the structures at the electrode and device levels, which leads to restricted ion transport during cycling. The approach of this research is to develop a complete materials-manufacture-characterisation chain for LIBs, solid-state LIBs (SSLIBs) and next generation of batteries. Novel structures at the electrode and device levels will be designed to promote fast directional ion transport, increase energy and power densities, improve safety and cycling performance and reduce costs. New, scalable manufacturing techniques will be developed to realise making the designed structures and reduce interfacial resistance in SSLIBs. Finally, state-of-the-art physical and chemical characterisation techniques including a suite of X-ray photoelectron spectroscopy (XPS), X-ray computed tomography (XCT) and electrochemical testing will be used to understand the underlining charge storage mechanism, interfacial phenomena and how electrochemical performance is influenced by structural changes of the energy storage devices. The results will subsequently be used to guide iterations of the structure design. The fabricated batteries will be packaged into pouch cells and rigorously tested by EV protocols through close collaborations with industry to ensure flexible adaptability to the current industry match to create near-term high impact in industry. The commercialisation strategy is to license developed intellectual property (IP) to material and battery manufacturers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R023581/1
    Funder Contribution: 1,831,450 GBP

    Realising a secure, low-carbon energy future depends upon integrating variable generation into the energy system at a large scale, as well as efficiently harvesting renewable energy. Electrochemical and photoelectrical conversion devices are critical to this goal. The fundamental phenomenon that controls how all such devices perform is charge transport, both through and between materials. The Materials Research Hub for Energy Capture, Conversion, and Storage (M-RHECCS) sets out to advance understanding of the structure/function relations that control charge transport in energy materials, forging general principles that govern charge mobility and exchange. By so doing we will lay a foundation for the informed design of next-generation energy materials. Prior efforts at this scale have built teams centred on isolated technologies. Our vision is more integrated, recognizing that electronic, ionic, and mixed conductors form the operational cores of solar cells, fuel cells, batteries, capacitors, and electrolysers. Impressive advances have been made to face some challenges, delivering innovative processes, analytical techniques, and computational models, but poor integration between application areas restricts progress. M-RHECCS brings together world-leading experts across materials disciplines and energy technologies to form a new network, encouraging unorthodox thinking to spark transformative science. The M-RHECCS will connect experimentalists and theorists across disciplines to advance the basic science of charge mobility. Team members will also examine challenges in translating new science into manufacture and application. To ensure impact we propose to focus on 1) breaking the paradigm of 'power or energy' by making porous electrodes and porous or microstructured composites that produce power and energy, 2) structure/function relations that govern charge mobility in mixed ion/electron conductors (MIECs) and ultimately control the performance and stability of MIEC-based electrodes and active media and 3) elucidating transport modes in unconventional ion conducting polymers and ceramics. Porous electrodes and microstructured composites are used in almost all electrochemical devices and in new types of solar cell. We shall investigate how pore size, structure, and order influence power and energy density in electrochemical systems, how microstructure influences current generation and efficiency in solar cells, and how to optimise both. Single-phase MIECs are found in electrodes and active layers of hybrid solar cells, as well as electrodes in fuel cells, electrolysers, and Li-ion batteries. Optical, electrical, and electrochemical measurements, and self-consistent simulation, will combine to elucidate factors that control charge mobility and the critical issue of stability. Ion-conducting polymers and ceramics are core to fuel cells and electrolysers, and solid Li+ conductors could enable all-solid-state batteries, but high conductivity and suitable mechanical properties must be achieved. We aim to learn what material features control ion transport to pave the way for designing innovative conductors. M-RHECCS will also research the translation of advances in porous electrodes, MIECs and ion-exchange materials into scaleable materials and devices. We will assess the value of better charge-transport materials to power generation via detailed analysis of operational data from actual building-integrated solar generation/storage systems . Engagement with our many industrial partners will maximise our work's impact. The M-RHECCS will pull together not only the energy materials researchers across our five partner institutions but also network stakeholders with cognate interests across the UK, in academia, industry, government, and beyond. We will engage with international leaders in charge-transport materials, inviting them to visit the Hub and the UK more widely and take part in M-RHECCS organised networking events.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.