Powered by OpenAIRE graph

AVERE

ASSOCIATION EUROPEENNE DES VEHICULES ELECTRIQUES A BATTERIES, HYBRIDES ET A PILE A COMBUSTIBLE
Country: Belgium
11 Projects, page 1 of 3
  • Funder: European Commission Project Code: 101160665
    Overall Budget: 12,845,000 EURFunder Contribution: 10,997,800 EUR

    The AHEAD (AI-informed Holistic Electric Vehicles Integration Approaches for Distribution Grids) project will create a simulation environment capable of predicting the most convenient location to place the electric vehicle (EV) charging stations and optimise both the usage of the power grid resources, and the charging stations located in urban and rural areas. This simulation environment will exploit the unique features of currently available AI models and include two layers: the spatial mapping one (placing the chargers where the people need them to be), and the power grid one (placing the chargers where the grid can support them). Innovative smart charging algorithms will be designed and tested in the model, to minimise the impact of EV charging pools on the network, and ensure the consumers have economic benefits. Moreover, these smart charging algorithms will be tested in three demonstration sites, dedicated to assessing the technical and economic feasibility of smart charging light and heavy-duty EVs, and boats. To this end, AHEAD gathered relevant partners from all the EV value-chain: technology providers who want to test their equipment in the real world, grid operators, who want to optimise the usage of the grid resources and mitigate the EV charging impact, and research institutions, who aim at advancing the knowledge on the topic and producing value for society. Particular attention is going to be placed on the user experience and cybersecurity part of the demonstrators, with specific partners who focus their efforts on understanding how to minimize the impact of smart charging on the user experience and on creating a model to represent cyber-attacks on the chargers to suggest efficient defensive mechanisms for system protection.

    more_vert
  • Funder: European Commission Project Code: 101138721
    Overall Budget: 12,580,900 EURFunder Contribution: 9,619,200 EUR

    While Fully electric vehicles (EV) have zero tailpipe emissions and are seen as a key solution to meeting the European Fit-for-55 target of reducing CO2 levels in 2030 and climate-neutrality by 2050, much more can be potentially achieved if the global market uptake of innovative EVs is accelerated. The ZEV-UP project aims to address this urgent need by developing modular, cost-effective, and user-centric EVs for both passenger and goods transportation. Leveraging innovative design and engineering techniques, ZEV-UP vehicles will be tailored to meet the specific needs of users in both developed and emerging markets, ensuring high levels of user acceptance and market uptake. Key innovations include a base L7e BEV model that is designed respectful of affordability and can be upgraded and adapted for various purposes and needs, including commercial applications and higher-value passenger vehicles. By optimizing vehicle components for reduced material usage and enhanced structural properties, the project will achieve lighter vehicles with increased autonomy and minimized environmental impact. ZEV-UP will also develop digital-twin models to improve vehicle development efficiency and reduce validation costs, as well as designing charging capabilities compatible with a variety of regional power systems. Novel business and usage models, such as Battery as a Service, will be explored to maximize the benefits and impact of the L7e BEV platform. User-centric design, informed by market research and field interviews in both established and developing countries, will be a central focus of the project. Additionally, ZEV-UP will develop a proliferation model to assess policy intervention scenarios and strategize for short- and long-term BEV uptake in various markets. By delivering these key results and adhering to its objectives, ZEV-UP will accelerate the transition to sustainable urban mobility and contribute to the reduction of greenhouse gas emissions in the transport sector.

    more_vert
  • Funder: European Commission Project Code: 243470
    more_vert
  • Funder: European Commission Project Code: 604714
    more_vert
  • Funder: European Commission Project Code: 101137932
    Overall Budget: 6,298,610 EURFunder Contribution: 6,298,610 EUR

    The fact is that the lithium deposits within the EU are associated with different mineralizations in solid host rocks, except from the lithium brines of South America and Australia. These mineralizations require a special approach when processing and purifying happen up to battery grade lithium carbonate. Li4Life proposal creates of an efficient technology for the extraction of lithium from poor or complex ores of underutilised deposits, as well as post-mining tailings, as the basis for the development of future clean energy. Reference objects is potentially viable lithium projects have been identified in Europe from Finland in the North, through Germany, Austria and Czech Republic in Central Europe, to Spain and Portugal in the South-West. To cover the needs of the EU Battery Industry, Li4Life is aim to contribute an ambitious objective to increase the EU domestic supply of local raw materials by at least 5% to upcoming 2030. This is possible by creating an innovative value chain for domestic lithium raw materials. Li4Life's pathway to this ambition - novel processing methods, and purification up to battery-grade lithium carbonate to overcome existing barriers, namely the lack of a sustainable social licence to operate (SLO) and compliance with strict EU environmental laws.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.