Powered by OpenAIRE graph

Invibio Limited

Country: United Kingdom

Invibio Limited

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/J017620/1
    Funder Contribution: 1,813,540 GBP

    The Innovation and Knowledge Centre in Regenerative Therapies and Devices has established a sustainable platform to address the creation of new technologies in Regenerative Therapies and Devices. Through strategic prioritisation and development of key technology areas we have sought to promote their accelerated adoption, with increased reliability, within a complex global marketplace with increasing cost constraints. Therapies and devices which facilitate the regeneration of body tissues offer the potential to revolutionise healthcare and be a catalyst for economic growth, creating a new business sector within healthcare technology. The IKCRTD has built upon the culture and research landscape of the University and its partners (industry, NHS and intermediaries/users) through the development of new innovation infrastructure and practices which deliver major clinical, health and industry outcomes. In the first two years of operation IKCRTD has: Established a high quality research and innovation platform that is underpinned by: £85m new research income Established academic supply chain, new research centre with 250 researchers University investment for a new Medical Technologies Innovation building to create a community to stimulate innovation. Embedded successful sustainable innovation through: The development of a robust sustainability model Strategic identification and prioritisation of key market sectors Contributing to the development of 35 new products that have reached the market Developing a culture of innovation across academic, industry and clinical partnerships. Established a significant profile and reputation through: Significant political visits and media coverage Widened reach and connections across the UK through strategic alignment with Regener8 Established a Medical Technologies brand to facilitate companies, academics and clinical partners to collaborate with the centre. Established robust innovation management through: Recruited and established core team and set up governance structures Established an innovation pipeline, stage gates and the criteria for project progression A defined IP portfolio, 11 Proof of Concept and 4 Co-Development projects directly funded Pipeline of 107 collaborative innovation projects Engagement with 34 company partners Access to wider network of 200 plus potential collaborative companies.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K027549/1
    Funder Contribution: 1,039,760 GBP

    Orthopaedic surgeons treat a wide variety of patients with cartilage damage, from young athletes with cartilage injury to elderly patients with advanced osteoarthritis. There are a variety of treatment options, and these are chosen based on the age of the patient. For patients under the age of 35, biological repair is successful. Biological repair includes techniques that try and make the cartilage heal itself by stimulating regenerative cells from the underlying bone (microfracture) or removing healthy cartilage cells from a non load bearing part of the joint, growing them in the laboratory, and re-implanting in the defect. For older patients, total or partial joint replacement is more reliable. The average age of total hip and knee replacement patients in the UK is 69 and 70 years respectively, and these have remained constant over the past five years indicating no trend for surgeons to replace joints of younger patients. There is therefore a wide gap in the treatments available for patients in the 35 to 60 year age bracket who are considered too old for biological repair, but too young to be considered ideal candidates for joint replacement. The aim of the fellowship is to develop the technology for patients in this age group that can replace the cartilage surface without removing bone stock such that any future partial or total joint replacements can be performed as a normal index procedure. To achieve this aim, the fellowship will use advanced materials and manufacturing techniques to create the technology required for cartilage substitution implants with ultra low friction and wear properties that will protect the device from the service loads it will experience in use. In addition to providing the orthopaedic surgeon with a treatment option for the 35-60 year old patient, developing this technology will have application across the whole orthopaedic field. It will generate the mechanical boundary conditions and test methods for further development of biological repair scaffolds and repair material (currently mostly fibrocartilage rather than the desired hyaline cartilage) for patients under 35 years old. The development of polymer technology will provide the information required for low cost all polymer implants that would be suitable for less functionally demanding patients. The manufacturing methods may also be suitable for interpositional implants with tailored frictional properties and morphology to prevent dislocation. Each of these themes will be pursued within the fellowship.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P001076/1
    Funder Contribution: 3,962,450 GBP

    Our vision is that patients with knee pain receive the right treatment at the right time. In the UK, one third of people aged over 45 have sought treatment for osteoarthritis, and the disease costs the NHS over £5 billion per year. The knee is the most common site for osteoarthritis, with over four million sufferers in England alone. The aging population with expectations of more active lifestyles, coupled with the increasing demand for treatment of younger and more active patients, are challenging the current therapies for knee joint degeneration. There is a major need for effective earlier stage interventions that delay or prevent the requirement for total knee replacement surgery. There are large variations in patients' knees and the way that they function, and it is important that this variation is taken into account when treatments are developed, so that the right treatment can be matched to the right patient. Through this ambitious programme of research we will develop novel testing methods that combine laboratory-based simulation and computer modelling to predict the mechanical performance of new therapies for the knee and enable their design and usage to be optimised. Importantly these tests will take into account the variation in patients' anatomy and knee biomechanics, as well as variations in device design and surgical technique. This will enable different therapies, or different variants of a device, to be matched to different patient groups. The tools will be applied to existing treatments using clinical data to help validate that our model predictions are correct. The outcomes will better define which patients will benefit from a particular intervention and help optimise their usage. We will then apply the methods to new and emerging treatments, including regenerative devices, so that they can be tested and optimised before costly clinical trials take place. We will use these examples as case studies to demonstrate how the new testing methods can optimise the products before they reach the patient, and we will work with industry, standards agencies and regulators to promote the adoption of these methods across the sector. This programme will benefit patients, the NHS and the growing UK industry and science base that are developing new therapies for the knee.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L014823/1
    Funder Contribution: 3,372,620 GBP

    The Centre for Doctoral Training in Tissue Engineering and Regenerative Medicine will provide postgraduate research and training for 75 students, who will be able to research, develop and deliver regenerative therapies and devices, which can repair or replace diseased tissues and restore normal tissue function. By using novel scaffolds in conjunction with the patient`s own (autologous) cells, effective acellular regenerative therapies for tissue repair can be developed at a lower cost, reduced time and reduced risk, compared to alternative and more complex cell therapy approaches. Acellular therapies have the additional advantage as being regulated as a class three medical device, which reduces the cost and time of development and clinical evaluation. Acellular technologies, whether they be synthetic or biological, are of considerable interest to industry as commercial medical products and for NHS Blood and Transplant as enhanced bioprocesses for human transplant tissues. There are an increasing number of small to medium size companies in this emerging sector and in addition larger medical technology companies see opportunities for enhancing their medical product range and address unmet clinical needs through the development of regenerative devices. The UK Life Sciences Industry Strategy and the UK Strategy for Regenerative Medicine have identified this an opportunity to support wealth and health, and the government has recently identified Regenerative Medicine as one of UK`s Great Technologies. In one recent example, we have already demonstrated that this emergent technology be translated successfully into regenerative interventions, through acellular human tissue scaffolds for heart valve repair and chronic wound treatment, and be commercialised as demonstrated by our University spin out Tissue Regenix who have developed acellular scaffold from animal tissue, which has been commercialised as a dCEL scaffold for blood vessel repair. The concept can potentially be applied to the repair of all functional tissues in the body. The government has recognised that innovation and translation of technology across "the innovation valley of death" (Commons Science and Technology Select Committee March 2013), is challenging and needs additional investment in innovation. In addition, we have identified with our partners in industry and Health Service, a gap in high level skills and capability of postgraduates in this area, who have appropriate multidisciplinary training to address the challenges in applied research, innovation, evaluation, manufacturing, and translation of regenerative therapies and devices. This emerging sector needs a new type of multidisciplinary engineer with research and training in applied physical sciences and life sciences, advanced engineering methods and techniques, supported by training in innovation, regulation, health economics and business, and with research experience in the field of regenerative therapies and devices. CDT TERM will create an enhanced multidisciplinary research training environment, by bringing together academics, industry and healthcare professionals in a unique research and innovation eco system, to train and develop the medical and biological engineers for the future, in the emerging field of regenerative therapies and devices. The CDT TERM will be supported by our existing multidisciplinary research and innovation activities and assets, which includes over 150 multidisciplinary postgraduate and postdoctoral researchers, external research funding in excess of £60M and new facilities and laboratories. With our partners in industry and the health service we will train and develop the next generation of medical and biological engineers, who will be at the frontier in the UK in innovation and translation of regenerative therapies and devices, driving economic growth and delivering benefits to health and patients

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N00941X/1
    Funder Contribution: 3,528,620 GBP

    Regenerative devices (scaffolds, biomaterials and interventions) which can repair and regenerate tissues using the patients` own cells, can be translated into successful clinical products and deliver patient benefit at much lower cost and risk and in shorter timescales then other regenerative therapies such as culture expanded cell therapies or molecular (drug) therapies. It is estimated that the global market for regenerative devices will grow to £50bn by 2020 and this offers a real opportunity to grow a £1bn per year industry in the UK in this field. The UK has genuine research strengths in the areas of biomaterials and tissue engineering, musculoskeletal mechanics (prioritised by EPSRC) and regenerative medicine. Regenerative medicine is one of the eight great technologies prioritised across the Research Councils. Research discoveries, new knowledge, outputs and outcomes are often not ready for uptake by industry to take forward through product development to the market and patient benefit. New technologies need to be advanced and de-risked. The clinical needs, potential products and markets need to be defined in order to make them attractive for investment, product development and clinical trials by industry. In the Medical Technologies Innovation and Knowledge Centre (MTIKC) Phase 1, working with industry and clinical partners, we have developed a professional innovation team and a unique innovation and translation process, creating a multidisciplinary research and innovation ecosystem. We have successfully identified research outcomes and new knowledge and created, advanced and translated technology across the innovation valley of death, enabling successful investment (over £100m) by industry and the private sector in new product development. Some products have already progressed to clinical trials and commercialisation and are realising patient benefits. We have established a continuous innovation pipeline of over fifty proofs of concept technology projects. Over the next five years in MTIKC Phase 2, we will address unmet clinical needs and market opportunities in wound repair, cardiovascular repair, musculoskeletal tissue repair, maxillofacial reconstruction, dental reconstruction and general surgery and diversify our research supply chain to over ten other Universities. We will support 150 collaborative projects with industry and initiate forty new industry inspired and academically led proof of concept projects, which are predicted to lead to a further £100m investment by the private sector in subsequent product development. This will enable a sustainable research and product development pipeline to be established in the UK which will support a £1bn / year industry in regenerative devices beyond 2020.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.