Halliburton KBR
Halliburton KBR
2 Projects, page 1 of 1
assignment_turned_in Project2007 - 2011Partners:Jaguar Cars, Asylum Research UK Ltd, Edwards, MSU, Unimatic Engineers Ltd +140 partnersJaguar Cars,Asylum Research UK Ltd,Edwards,MSU,Unimatic Engineers Ltd,Cognition Europe,The Technology Partnership Plc (TTP),Comsol Ltd,Ministry of Defence (MOD),BP Exploration Operating Company Ltd,COMSOL Ltd,Thales,Instem Computer Systems,Thales Aerospace,Oxford Instruments Group (UK),Bernard Matthews,LG Mouchel and Partners,Holroyd Machine Tools Gears &,Accuromm UK Ltd,Unilever (United Kingdom),Ministry of Defence,Bombardier Aerospace,LCP CONSULTING LTD,BAE Sytems Electronics Ltd,Rolls-Royce (United Kingdom),Thales,Rolls-Royce Plc (UK),AIRBUS UK,Marden Edwards Ltd,Unipath Ltd,Galorath Affiliates Ltd,Rolls-Royce (United Kingdom),GE Fanuc Europe SA - UK Branch,East of England Development Agency,Unimatic Engineers Ltd,GE (General Electric Company) UK,Bovis Lend Lease,Northern Powergrid (United Kingdom),BAE Systems (United Kingdom),Amersham PLC,Atkins UK,ASYLUM RESEARCH UK LTD,[no title available],Autoliv Ltd,Halliburton KBR,Epigem Ltd,Unipath Ltd,GKN Aerospace Services Ltd,Doncasters Plc,Ministry of Defence MOD,LONDON UNDERGROUND LIMITED,Bae Systems Defence Ltd,CYTEC ENGINEERED MATERIALS LIMITED,Ove Arup & Partners Ltd,Cranfield University,Shell Research UK,AWE,National Blood Service,Castrol UK Ltd,Unilever Corporate Research,BP International,Delcam International plc,Cytec Engineered Materials,Bernard Matthews (United Kingdom),AIRBUS OPERATIONS LIMITED,UNILEVER U.K. CENTRAL RESOURCES LIMITED,Galorath Affiliates Ltd,VBC Group,Control 2K Ltd,Shell Research UK,NPL,National Physical Laboratory,De Montfort University,National Blood Service,LG Mouchel and Partners,DSTL,Battenfeld U K Ltd,VBC Group,Contour Fine Tooling Ltd,Atkins UK,Lockheed Martin UK,Epigem Ltd (Middlesbrough),Saint-Gobain Abrasives,Saint-Gobain Abrasives,Instem Computer Systems,Alere Limited (UK),Renold Precision Technologies,BAE Systems (Sweden),Lend Lease,GE Aviation,Lotus Engineering Ltd,Airbus,Air Liquide (France),Airbus (Netherlands),Arup Group Ltd,NHS Blood and Transplant NHSBT,BP British Petroleum,ArvinMeritor Automotive Light Vehicle,Alcoa Europe Flat Rolled Products,Autoliv Ltd,Michigan State University,Amersham plc,LCP Consulting Limited,Lockheed Martin,Delcam (United Kingdom),Edwards,Castrol UK Ltd,Scott Bader,MG Rover Group Ltd,East of England Development Agency,CRANFIELD UNIVERSITY,CONTOUR FINE TOOLING LIMITED,BAE Systems,DMU,Lotus Cars Ltd,Air Liquide (France),Bombardier Aerospace,TATA Motors Engineering Technical Centre,Technology Partnership Plc (The),Doncasters Plc,GE Fanuc Europe SA - UK Branch,AWE Aldermaston,Defence Science & Tech Lab DSTL,ArvinMeritor Automotive Light Vehicle,MG Rover Group Limited,ROLLS-ROYCE PLC,JAGUAR LAND ROVER LIMITED,BOC Edwards,Cognition Europe,Rolls-Royce Fuel Cell Systems Ltd,Tecan Components Ltd,Control 2K Ltd,Renold Precision Technologies,Scott Bader Company Ltd,Battenfeld U K Ltd,Airbus (United Kingdom),Delcam International plc,Tecan Components Ltd,Epigem Ltd,Airbus (United Kingdom),Accuromm UK Ltd,Halliburton KBR,Holroyd Machine Tools Gears &,GKN Aerospace,Alcoa Europe Flat Rolled ProductsFunder: UK Research and Innovation Project Code: EP/E001874/1Funder Contribution: 9,770,800 GBPThe Cranfield IMRC vision is to grow the existing world class research activity through the development and interaction between:Manufacturing Technologies and Product/Service Systems that move UK manufacturing up the value chain to provide high added value manufacturing business opportunities.This research vision builds on the existing strengths and expertise at Cranfield and is complementary to the activities at other IMRCs. It represents a unique combination of manufacturing research skills and resource that will address key aspects of the UK's future manufacturing needs. The research is multi-disciplinary and cross-sectoral and is designed to promote knowledge transfer between sectors. To realise this vision the Cranfield IMRC has two interdependent strategic aims which will be pursued simultaneously:1.To produce world/beating process and product technologies in the areas of precision engineering and materials processing.2.To enable the creation and exploitation of these technologies within the context of service/based competitive strategies.
more_vert assignment_turned_in Project2015 - 2018Partners:Halliburton KBR, University of Warwick, University of Warwick, Semelab Plc, Semelab Plc +1 partnersHalliburton KBR,University of Warwick,University of Warwick,Semelab Plc,Semelab Plc,Halliburton KBRFunder: UK Research and Innovation Project Code: EP/N00647X/1Funder Contribution: 99,058 GBPSeveral problems facing society in the 21st century share a common problem: that when electronic devices heat up, they become inefficient, wasting energy. It is therefore the case that in your laptop there is significant space, weight and significant design cost associated with implementing the right cooling system to efficiently extract the heat. The laptop is however, a relatively low-power system, operating on earth at a rather pleasant 20C room temperature. Engineers are regularly facing this problem on a much larger scale, in much ambient temperatures, and in a situation where it is often difficult, expensive and often highly impractical to implement active cooling. Oil and gas engineers, attempting to harvest the fossil fuels we are still highly dependent on, face exactly this problem with the electronics that are driving the cutting tool motor. Power electronic devices delivering hundreds of Watts of power to the motor must do so in an ambient that can exceed 225C, operating miles under the ground with only slurry pumped from the surface to cool the devices. Similarly, electric cars are forced into restrictive design choices keeping the electronics as far from the engine as possible to minimise the cooling requirements. In space, near-sun planetary explorers are essentially floating refrigerators, the inner cabin cooled, at great cost to eventual mission length, down to earth-like temperatures when the temperature outside can exceed 300C around Venus or Mercury. The potential benefit for having electronics operating in these environments without cooling is huge, leading to greater efficiency, reliability and mission length, saving space, weight and importantly cost. This project looks to redesign the silicon device and to push its thermal behaviour to the absolute limit, so minimising the need for cooling, or eliminating it entirely. This is to be done by combining it with another material, silicon carbide, that will act as a heat sink placed within fractions of a micro-meter of the active device itself. These new Silicon-on-Silicon Carbide (Si/SiC) devices are expected to offer gains in device efficiency over any existing silicon device operating at elevated temperature. Alternatively, the same level of performance could be retained as with existing solutions, except at temperatures as much as 100C higher, or at much higher power (as much as 4x). The power transistor, implemented entirely with the silicon thin film, is a laterally-diffused metal-oxide-semiconductor field effect transistor (LD-MOS) or a lateral insulated gate bipolar transistor (L-IGBT), similar to those that have been developed for silicon on insulator (SOI) or silicon-on-sapphire. These devices shall be optimised for breakdown voltages rated from 50 to 600 V, making the devices ideal for applications such as downhole motor drives required by project partner Halliburton, and for solar array inverters destined for space.
more_vert
