Powered by OpenAIRE graph

Howden (United Kingdom)

Howden (United Kingdom)

6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/M015351/1
    Funder Contribution: 1,035,600 GBP

    This project seeks to investigate the potential for using waste materials within combustion systems within the UK in the future, and how the combustion of such wastes might affect the ability of a power station to respond to changes in electricity demand. The purpose is not to look at today's electricity system and systems of governance with respect to combustion of wastes, but to consider how a rational system would be designed that utilised all potential fuel streams (and takes into account that different wastes will contain different levels of trace elements, some of which may be quite minor). An important point is that many wastes are currently landfilled - meaning that both the energy content of the waste is lost and a bulky material ends up in landfill. Here, we will conduct experiments looking at emissions of trace elements during combustion and co-firing (with coal) of different types of "waste" materials (for example, wood from demolition sites), together with analysis of ashes produced. The results will then be used to generate models of power plants burning wastes, and used to determine whether, for the wastes examined, the most rational use of the waste is combustion in dedicated facilities or co-combustion. It is clear that some of the wastes we will examine currently fall within the remit of the waste incineration directive (though all will be non-halogenated). We will examine whether this is scientifically valid.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J02077X/1
    Funder Contribution: 1,111,260 GBP

    The 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. To meet this challenge the UK Climate Change Committee (CCC) issues regular carbon budgets with recommendations on the way in which the UK needs to reduce its emissions. In its 2010 4th carbon budget, there is a clear plan for power sector decarbonation to 2030, by investing in 30-40 GW of low carbon capacity with a value of the order of £100 billion. This would drive average emissions from generation down to around 50gCO2/kWh by 2030 and includes 4 CCS demonstration plants by 2020. The CCC recognises the key role for the UK of gas fired power plants: 46% of current electricity generation and 35% of emissions are from gas. It also identifies CCS retrofit as an attractive option for existing CCGT plants, indicating that 20GW of plant currently on the system would be suitable for retrofit in the 2020s, together with any plant added over the next decade (10-15 GW). CCGT plants are likely to contribute 25% of electricity generation in the 2030s. Roughly 2/3 of CCS costs lie in the capture process and it is here that the greatest opportunities for savings lie. Therefore, the Government is supporting research to develop improved and lower cost processes and equipment and this proposal is directly aligned with this aim in order to support the UK economy and help the UK take the lead in this emerging technology over the next 10 to 20 years. In line with the CCC recommendations the focus of this proposal is on capture technology for retrofit to existing CCGT plants. We propose to develop next generation enhanced capture technology and in particular reduce plant size through novel advanced adsorbents and the optimisation of fast cycle thermal regeneration using rotary wheel adsorbers. Research challenge - The key challenge in post combustion capture from gas fired power plants is due to the low CO2 concentration in the flue gas, approximately 4% by volume. This means that conventional amine processes will have a large energy penalty and the presence of high concentration of oxygen leads to high amine deactivation rates. Novel adsorbents and adsorption processes have the potential to improve the efficiency of the separation process. Given the very low CO2 partial pressure in the flue gas, the selection of novel adsorbents is very different from the equivalent approach to coal fired power plants. The adsorbents will have to have a very high selectivity to achieve good capture capacity with dilute mixtures. As a result these materials will have to be based either on very strong physisorption or chemisorption and the regeneration will have to be by thermal cycling. This poses the engineering challenge of developing a process that will achieve rapid thermal swings of the order of a few minutes, which is over an order of magnitude faster than traditional Thermal Swing Adsorption (TSA) fixed bed processes. We plan an ambitious programme of work that will address both materials and process development for carbon capture from gas fired power plants.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M001482/1
    Funder Contribution: 1,099,890 GBP

    UK electricity generation still relies around 80% on fossil fuels, with a resulting carbon intensity - the amount of carbon emitted to the atmosphere per unit of electricity generated - ten times higher than the level recommended to avoid dangerous climate change. Half of that electricity currently comes for natural gas and is expected to increase in the next decade as new gas-fired generation is commissioned to replace, along with renewables, old inefficient coal plants built in the 1960s. Over 20GW of gas capacity has been permitted since 2007, equivalent to a quarter of the current installed capacity for electricity generation. Unabated (no carbon capture) gas plants produce six to seven the amount of carbon per unit of electricity compared to the levels recommended for UK electricity generation by 2030. They must be fitted with Carbon Capture and Storage to provide reliable low-carbon energy to fill-in gaps between inflexible nuclear and intermittent wind power generation and a fluctuating electricity demand. Gas CCS R&D is an important emerging field, particularly to address the issue of rapidly increasing additional carbon in shale gas reserves, and many of the concepts and underlying scientific principles are still being 'invented'. Ongoing UK infrastructure investments and energy policy decisions are being made which would benefit from better information on relevant gas CCS technologies, making independent, fundamental studies by academic researchers a high priority. The UK is leading Gas CCS deployment with the retrofit of Peterhead power station, as part of the UK CCS Commercialisation programme at the time of writing. Key engineering challenges remain for the second and third tranche of gas CCS projects to be rolled out in the 2020s and 2030s. Efficient and cost-effective integration of CCS with gas turbines would be enhanced and costs of electricity generation greatly reduced if the carbon dioxide (CO2) concentration in the exhaust were much higher than the typical 3-4% value seen in modern Gas Turbine systems. An innovative solution is to selectively recirculate CO2, upstream of the post-combustion CO2 capture process, from the Gas Turbine exhaust back through the inlet of the engine, thereby greatly increasing CO2 concentration and subsequently reducing the burden on the CCS plant. The main result would be a more cost-effective plant with a significantly reduced visual impact. In order to achieve this concept, 3 main challenges must be overcome, which form the basis of the proposed work: 1. Plant Design and Optimisation. Based on advice from manufacturers and research data, a series of scenarios will be considered for the amount of exhaust recirculation through the engine. This will include results from other parts of the project, such as the engine performance tests. 2. GT-CCS Integration. Experimental testing will show how engines and CCS processes function when the two must work in a symbiotic fashion. This will include the measurement of gas turbine burner performance under operational conditions, engine testing, plus experiments on CCS columns to determine their effectiveness with this recirculated exhaust gas. 3. Scale-up and Intensification. Based on the research data gathered in the previous steps, the project will then publish findings on the viability of this concept, including application of this data to set design rules for future GT-CCS plants. Applying this idea further the project will estimate the impact on the UK's energy mix if these plants were considered economically viable. This project has a strong practical basis, employing a variety of state-of-the-art research facilities from 3 well-established UK Universities. These will include measurement of combustion behaviour under high pressure and temperature conditions, performance testing of GT engine sets with recycled exhaust and fundamental studies of the behaviour of CCS columns.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M001369/1
    Funder Contribution: 996,574 GBP

    The UK needs carbon capture and storage (CCS) as part of its energy mix to minimise the cost of decarbonising our economy. CCS will have to fit into an electricity market that is increasingly dominated by inflexible nuclear and uncontrollable wind. It will therefore be vital that the CCS plants we develop are sufficiently flexible to interact with this new system, and balance the rapid start and cycling abilities with the lowest possible capital and operating costs. Flexible CCS will be characterised by the ability to simultaneously interact with the complex electricity system of the future and also the downstream CO2 transport and storage system. Rather than burning fuel purely in response to electricity price, CCS operators will also have to factor in waste storage costs, which will suffer similar complexity due to constraints on CO2 transport and injection rates and gas composition. This project will identify the flexibility bottlenecks in the CCS chain and also promising options for the development of resilient CCS systems. These models will internally calculate CCS plant load factors and electricity wholesale prices, thereby enabling a rigorous, technologically- and temporally-explicit, whole systems analysis. Feedback from CO2 storage operations will exert an as-yet unknown impact on the feasible operating space of the decarbonised power plant. We will explicitly quantify the interactions between the above- and below-ground links in the CCS chain. Sample CCS chains developed will be assessed in more detail concerning their broader role in the UK energy system. The implications of technological improvements in critical technologies such as advanced sorbents, improved air separation technologies and the availability of waste heat will also be considered. On a larger scale, the inter-operation of sample UK-specific CCS networks with intermittent renewable energy generation will be examined from an internally consistent whole-systems perspective. The internalisation of exogenous boundary conditions (e.g., the role of renewable energy and CCS plant load factors) and the development of multi-source-to-sink CCS system models will enable the most accurate assessment to date of how CCS will fit into the UK energy system and would interact with other energy vectors. The linking of CCS and renewable energy generation system models will allow us to examine the opportunities and impacts associated with the co-deployment of renewable energy and CCS in the UK. This will feed into a wider policy analysis that will examine the dynamics of changing system infrastructure at intermediate time periods between now and 2050. Dissemination of research output will be continuous over the duration of the project. We will engage with the academic community via publication in the international peer reviewed scientific literature and presenting at selected conferences. Owing to the topical nature of this research, public engagement is a priority for us. We plan on creating and managing a project webpage will provide real time insight into project progress and intermediate conclusions and results. All research papers and presentations will be available from this site. Similarly, we will conduct a continuous horizon scanning activity as part of this project. Our website will be continuously updated with a view to providing an understanding of where our research fits in the broader UK and international research arena. This work will be carried out via the development and integration of detailed mathematical models of each link in the CCS chain. We have engaged with a leading UK-based software development company with whom we will work to make these models available to the academic and broader stakeholder community. Further, a version of the modelling tools suitable for use by the general public will also be prepared. It is expected that this tool will be analogous in form and functionality to the DECC 2050 Calculator.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N024613/1
    Funder Contribution: 860,547 GBP

    The 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. This target will require nearly complete decarbonisation of large and medium scale emitters. While the power sector has the option of shifting to low carbon systems (renewables and nuclear), for industrial emissions, which will account for 45% of global emissions, the solution has to be based on developing more efficient processes and a viable carbon capture and storage (CCS) infrastructure. The government recognises also that "there are some industrial processes which, by virtue of the chemical reactions required for production, will continue to emit CO2", ie CCS is the only option to tackle these emissions. In order for the UK industry to maintain its competitiveness and meet these stringent requirements new processes are needed which reduce the cost of carbon capture, typically more than 60% of the overall cost of CCS. Research challenge - The key challenges in carbon capture from industry lie in the wide range of conditions (temperature, pressure, composition) and scale of the processes encountered in industrial applications. For carbon capture from industrial sources the drivers and mechanisms to achieve emissions reductions will be very different from those of the power generation industry. It is important to consider that for example the food and drinks industry is striving to reduce the carbon footprint of the products we purchase due to pressures from consumers. The practical challenge and the real long term opportunity for R&D are solutions for medium to small scale sources. In developing this project we have collaborated with several industrial colleagues to identify a broad range case studies to be investigated. As an example of low CO2 concentration systems we have identified a medium sized industry: Lotte Chemicals in Redcar, manufacturer of PET products primarily for the packaging of food and drinks. The plant has gas fired generators that produce 3500 kg/hr of CO2 each at approximately 7%. The emissions from the generators are equivalent to 1/50th of a 500 MW gas fired power plant. The challenge is to intensify the efficiency of the carbon capture units by reducing cycle times and increasing the working capacity of the adsorbents. To tackle this challenge we will develop novel amine supporting porous carbons housed in a rotary wheel adsorber. To maximise the volume available for the adsorbent we will consider direct electrical heating, thus eliminating the need for heat transfer surfaces and introducing added flexibility in case steam is not available on site. As an example of high CO2 concentrations we will collaborate with Air Products. The CO2 capture process will be designed around the steam methane reformer used to generate hydrogen. The tail gas from this system contains 45% v/v CO2. The base case will be for a generator housed in a shipping container. By developing a corresponding carbon capture module this can lead to a system that can produce clean H2 from natural gas or shale gas, providing a flexible low carbon source of H2 or fuel for industrial applications. Rapid cycle adsorption based processes will be developed to drive down costs by arriving flexible systems with small footprints for a range of applications and that can lead to mass-production of modular units. We will carry out an ambitious programme of work that will address both materials and process development for carbon capture from industrial sources.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.