Powered by OpenAIRE graph

British Precast Concrete Federation Ltd

Country: United Kingdom

British Precast Concrete Federation Ltd

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N010108/1
    Funder Contribution: 296,786 GBP

    Computational Seeding of Bio-Receptive Materials is an interdisciplinary research proposal that brings together a design team with high expertise in architecture, biology and engineering. It aims to develop an innovative wall-panel system capable of growing microorganisms directly on its surface. By utilizing novel design engineering methods the research seeks to improve facade performance through the implementation of a new type of biologically receptive concrete. This system intends to overcome many of the limitations of existing green walls, particularly the need for mechanical irrigation systems and expensive maintenance. This proposal responds to the urgency of improving the environmental quality of our cities. Climate change, increasing levels of pollution, and the loss of pervious surfaces within the urban fabric, has resulted in an ongoing effort of making our cities greener and more sustainable, especially in the developed world. Building envelopes, in particular roofs and facades, have been targeted as an opportunity for greening. However, current 'green walls' have proven expensive to implement and manage. This notion of 'greening' has also failed to address the increasing loss of cryptogamic cover surfaces (algae, mosses, lichens, etc.), which due to their scale have passed rather unnoticed in our cities. In response, biologically receptive cementitious materials have been studied and chemically altered to provide pH levels, porosity values and water retention properties that are favourable for microorganisms to establish and proliferate. The adoption of biologically receptive concrete as a means of fostering green growth has the potential for the building's façade itself to become the biological substratum for the growth of photosynthetic systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I032150/1
    Funder Contribution: 273,329 GBP

    This proposed research is concerned with the current state of buried sewer systems as measured by their remaining safe life. It aims to develop a suite of stochastic models for corrosion effects to be used for the accurate prediction of the remaining safe life of aged and deteriorated sewers. The outputs of the research will enable a step-change improvement in asset management of sewer systems, thereby sharpening the competitive edge of the UK water sector both technologically and economically. The proposed work consists of a number of components: (i) the identification of the most dominant mechanisms of deterioration and the underlying contributing factors for cementitious sewers, (ii) the examination and analysis of the cause/effect relationship of the corrosion process for this group of sewers, (iii) the development of rational and practical models of corrosion effects for this group of sewers, and (iv) the development of a scientifically advanced tool for predicting the remaining safe life of this group of sewers. The models to be developed will be based on corrosion science principles, derived from chemical physical observations through experiments from real world test sites and in laboratory, and validated to real sewers. This approach is in stark contrast to the few existing corrosion models, which are based on empirically data mining and lack of scientific derivation and practical validation. The tool to be developed will be based on advanced time-dependent reliability theory which takes into account not only the uncertainties of various contributing factors but also the time. It is noted that expertise in time-dependent reliability theory is not widely available in the UK and needs to be developed, in particular its application to service life prediction for sewers. The proposed research builds on the success of the PI's previous research on corrosion and its effects on structural deterioration and service life prediction of corrosion affected concrete infrastructure. The outputs of the research will equip engineers, asset managers and operators with a tool to predict and then decide when and where interventions are needed to prevent unexpected failures of sewers so that a risk-informed and cost-minimised management strategy for sewer asset can be achieved. The proposed research has strong support of industry leaders, representing all stakeholders of sewer systems. The 2009 ICE State of The Nation Report Defending Critical Infrastructure identifies system failure as the No.1 threat to UK's infrastructure. This has timely raised the alarm for the urgent need to develop innovative solutions to the better management of the existing but aged and deteriorated infrastructure. In the light of considerable research that has been undertaken on aboveground infrastructure, this threat cannot be more apparent for underground infrastructure, e.g. buried sewers. The situation has been exacerbated due to more unknowns and uncertainties relating to the factors that affect the operation of underground infrastructure: sewer systems in particular, which effectually corroborates the urgent need for assessing the current state of these sewer systems and their remaining safe life.This research will contribute to the advancement of knowledge and skills in the deterioration of cementitious sewers, the modelling of the deterioration and the prediction of the remaining safe life for deteriorated sewers. It will contribute to creating social, economic, environmental and health benefits for the nation. It will also contribute to the UK's international leadership in the optimal management of sewer asset.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037272/1
    Funder Contribution: 5,833,230 GBP

    This proposal from Loughborough University outlines the case to renew the funding for the Industrial Doctorate Centre for Innovative and Collaborative Construction Engineering (CICE) as part of the Industrial Doctorate Centres call aginst the Towards Better Exploitation element of the EPSRC Delivery Plan. In partnership with an established industry base, CICE is delivering a high quality research and training programme that: meets the core technical and business needs of the construction industry; enhances its knowledge base; and produces high calibre doctoral graduates that can drive innovation. The Centre addresses a wide range of research issues that concern the UK construction industry including: Innovative Construction Technologies; Construction Business Processes; Advanced Information and Communication Technologies; Sustainable Design and Construction; and Transport and Infrastructure. Many of these areas have been highlighted in various reviews of the industry including the Latham Report, the Technology Foresight Report, the Egan Task Force Report, and more recently the National Technology Platform's research priorities. It also contributes to the EPSRC Delivery Plan as part of the knowledge transfer research and training activities. The research areas of the Centre align with the Engineering and Science for Sustainability research theme, as outlined in the EPSRC's Research Priorities and Opportunities, and fall under the 'Construction and the Built Environment' and 'Transport' sub-themes. Within the Construction and Built Environment, the Centre builds on existing strengths in the Department of Civil and Building Engineering established as part of the Engineering Doctorate Centre and other related industry based research to address some of the EPSRC research priorities to improve efficiency across the supply chain, including: encouraging the uptake of ICT to promote efficiency; improving building performance to minimise impacts on the environment ; and the analysis and design of civil engineering structures . Within the Transport area Sustainability and Innovation are key themes of the research that centres on transport operation and management, transport telematics, and minimising energy use and environmental impact . The Engineering Doctorate Centre (CICE) was established in 1999 and has subsequently recruited a total of 94 research engineers sponsored by a total of 63 large, medium and small companies. Loughborough University is a research intensive institution, which integrates its research and teaching activity at every opportunity to provide a top quality research led learning experience for all its students. The Department of Civil and Building Engineering has consistently achieved high research rating in the RAE assessments and the last RAE results were 5* in Built Environment. The Engineering Doctorate is part of Loughborough University's excellent doctoral research training programme, which in addition to supporting the pursuit of a particular project aims to provide a basic professional training to support the research and offer personal development opportunities. The training programme integrates taught and research elements tailored to suit the needs of the research engineer, project, and the sponsoring company while maintaining the expected quality of the academic standards required for a doctoral study. The Centre is managed by the Director, Prof. Dino Bouchlaghem supported by a Deputy Director, a Centre Manager and an Administrator. A Centre Management Board consisting of the Director, Deputy Director, and Industrial Representatives meets twice a year and is chaired by a senior industrialist from one of the sponsoring companies, oversees the work of the Centre and provides direction and guidance on strategic matters. This proposal has the full support of the University and has been subject to an internal review process to ensure synergy with the University's Research Strategy.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.