Powered by OpenAIRE graph

DeepMind (United Kingdom)

DeepMind (United Kingdom)

6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/S00453X/1
    Funder Contribution: 310,597 GBP

    Across the past 50 years, the use of robots in industry has monotonically increased, and it has literally boomed in the last 10 years. In 2016, the average robot density (i.e. number of robot units per 10,000 employees) in the manufacturing industries worldwide was 74; by regions, this was 99 units in Europe, 84 in the Americas and 63 in Asia, with an average annual growth rate (between 2010 and 2016) of 9% in Asia, 7% in the Americas and 5% in Europe. From 2018 to 2020, global robot installations are estimated to increase by at least 15% on average per year. The main market so far has been the automotive industry (i.e. an example of heavy manufacturing), where simple and repetitive robotic manipulation tasks are performed in very controlled settings by big and expensive robots, in dedicated areas of the factories where human workers are not allowed to enter for safety reasons. New growing markets for robots are consumer-electronics and food/beverages (i.e. examples of light manufacturing) as well as other small and medium sized enterprises (SMEs): in particular, the food and beverage industry has increased robot orders by 12% each year between 2011 and 2015, and by 20% in 2016. However, in many cases the production processes of these industries require delicate handling and fine manipulations of several different items, posing serious challenges to the current capabilities of commercial robotic systems. With 71 robot units per 10,000 employees (in 2016), the UK is the only G7 country with a robot density below the world average of 74, ranking 22nd. The industry and SME sector is highly in need of a modernization that would increase productivity and improve the working conditions (e.g. safety, engagement) of the human workers: this requires the development and deployment of novel robotic technologies that could meet the needs of those businesses in which current robots are yet not effective. One of the main reasons why robots are not effective in those applications is the lack of robot intelligence: the ability to learn and adapt that is typical of humans. Indeed, robotic manipulation can be enhanced by relying on humans, both through interaction (i.e. humans as direct teachers) and through inspiration (i.e. humans as models). Therefore, the aim of this project is to develop a system for natural human demonstration of robotic manipulation tasks, combining immersive Virtual Reality technologies and smart wearable devices (to interface the human with the robot) with robot sensorimotor learning techniques and multimodal artificial perception (inspired by the human sensorimotor system). The robotic system will include a set of sensors that allow to reconstruct the real world, in particual by integrating 3D vision with tactile information about contacts; the human user will access this artificial reconstruction through an immersive Virtual Reality that will combine both visual and haptic feedback. In other words, the user will see through the eyes of the robot, and will feel through the hands of the robot. Also, users will be able to move the robot just by moving their own limbs. This will allow human users to easily teach complex manipulation tasks to robots, and robots to learn efficient control strategies from the human demonstrations, so that they can then repeat the task autonomously in the future. Human demonstration of simple robotic tasks has already found its way to industry (e.g. robotic painting, simple pick and place of rigid objects), but still it cannot be applied to the dexterous handling of generic objects (e.g. soft and delicate objects), that would result in a much larger applicability (e.g. food handling). Therefore, the expected results of this project will boost productivity in a large number of industrial processes (economic impact) and improve working conditions and quality of life of the human workers in terms of safety and engagement (social impact).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K009788/1
    Funder Contribution: 104,530 GBP

    The aim of this network is to establish the UK as the world leading authority in the joint area of Computational Statistics and Machine Learning (CompStat & ML) by advancing communication, interchange and collaboration within the UK between the disciplines of Computational Statistics (CompStat) and Machine Learning (ML). The UK has tremendous research strength and depth that is widely acknowledged as world leading in both the individual areas of Computational Statistics and Machine Learning. Despite each of these fields of research developing, largely, independently and having their own separate journals, international societies, conferences and curricula both areas of investigation share a common theoretical foundation based on the underlying formal principles of mathematical statistics and statistical inference. As such there is a natural diffusion of concepts, research and individuals between both disciplines. This network will seek to formalise as well as enhance this interchange and in the process capitalise on important synergies that will emerge from the combined and shared research agendas of CompStat & ML.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K009788/2
    Funder Contribution: 93,194 GBP

    The aim of this network is to establish the UK as the world leading authority in the joint area of Computational Statistics and Machine Learning (CompStat & ML) by advancing communication, interchange and collaboration within the UK between the disciplines of Computational Statistics (CompStat) and Machine Learning (ML). The UK has tremendous research strength and depth that is widely acknowledged as world leading in both the individual areas of Computational Statistics and Machine Learning. Despite each of these fields of research developing, largely, independently and having their own separate journals, international societies, conferences and curricula both areas of investigation share a common theoretical foundation based on the underlying formal principles of mathematical statistics and statistical inference. As such there is a natural diffusion of concepts, research and individuals between both disciplines. This network will seek to formalise as well as enhance this interchange and in the process capitalise on important synergies that will emerge from the combined and shared research agendas of CompStat & ML.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S024050/1
    Funder Contribution: 5,532,020 GBP

    A growing consensus identifies autonomous systems as core to future UK prosperity, but only if the present skills shortage is addressed. The AIMS CDT was founded in 2014 to address the training of future leaders in autonomous systems, and has established a strong track record in attracting excellent applicants, building cohorts of research students and taking Oxford's world-leading research on autonomy to achieve industrial impact. We seek the renewal of the CDT to cement its successes in sustainable urban development (including transport and finance), and to extend to applications in extreme and challenging environments and smart health, while strengthening training on the ethical and societal impacts of autonomy. Need for Training: Autonomous systems have been the subject of a recent report from the Royal Society, and an independent review from Professor Dame Wendy Hall and Jérôme Pesenti. Both reports emphatically underline the economic importance of AI to the UK, estimating that "AI could add an additional USD $814 billion (£630bn) to the UK economy by 2035". Both reports also highlight the urgency of training many more skilled experts in autonomy: the summary of the Royal Society's report states "further support is needed to build advanced skills in machine learning. There is already high demand for people with advanced skills, and additional resources to increase this talent pool are critically needed." In contrast with pure Artificial Intelligence CDTs, AIMS places emphasis on the challenges of building end-to-end autonomous systems: such systems require not just Machine Learning, but the disciplines of Robotics and Vision, Cyber-Physical Systems, Control and Verification. Through this cross-disciplinary training, the AIMS CDT is in a unique position to provide positive economic and societal impacts for autonomous systems by 1) growing its existing strengths in sustainable urban development, including autonomous vehicles and quantitative finance, and 2) expanding its scope to the two new application pillars of extreme and challenging environments and smart health. AIMS itself provides evidence for the strong and increasing demand for training in these areas, with an increase in application numbers from 49 to 190 over the last five years. The increase in applications is mirrored by the increase in interest from industrial partners, which has more than doubled since 2014. Our partners span all application areas of AIMS and their contributions, which include training, internships and co-supervision opportunities, will immerse our students in a variety of research challenges linked with real-world problems. Training programme: AIMS has and will provide broad cohort training in autonomous intelligent systems; theoretical foundations, systems research, industry-initiated projects and transferable skills. It covers a comprehensive range of topics centered around a hub of courses in Machine Learning; subsequent spokes provide training in Robotics and Vision, Control and Verification, and Cyber-Physical Systems. The cohort-focused training program will equip our students with both core technical skills via weekly courses, research skills via mini and long projects, as well as transferable skills, opportunities for public engagement, and training on entrepreneurship and IP. The growing societal impacts of autonomous systems demand that future AIMS students receive explicit training in responsible and ethical research and innovation, which will be provided by ORBIT. Additionally, courses on AI ethics, safety, governance and economic impacts will be delivered by Oxford's world-leading Future of Humanity Institute, Oxford Uehiro Centre for Practical Ethics and Oxford Martin Programme on Technology and Employment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016710/1
    Funder Contribution: 4,280,290 GBP

    The Oxford-Warwick Statistics Programme will train a new cohort of at least 50 graduates in the theory, methods and applications of Statistical Science for 21st Century data-intensive environments and large-scale models. This is joint project lead by the Statistics Departments of Oxford and Warwick. These two departments, ranked first and second for world leading research in the last UK research assessment exercise, can provide a wonderful stimulating training environment for doctoral students in statistics. The Centre's pool of supervisors are known for significant international research contributions in modern computational statistics and related fields, contributions recognised by over 20 major National and International Awards since 2008. Oxford and Warwick attract students with competitively won international scholarships. The programme leaders expect to expand the cohort to 11 or 12 per year by bringing these students into the CDT, and raising their funding up to CDT-level using £188K in support from industry and £150K support from donors. The need to engage in large-scale highly structured statistical models has been recognized for some time within areas like genomics and brain-imaging technologies. However, the UK's leading industries and sciences are now also increasingly aware of the enormous potential that data-driven analysis holds. These industries include the engineering, manufacturing, pharmaceutical, financial, e-commerce, life-science and entertainment sectors. The analysis bottleneck has moved from being able to collect and record relevant data to being able to interpret and exploit vast data collections. These and other businesses are critically dependent on the availability of future leaders in Statistics, able to design and develop statistical approaches that are scalable to massive data. The UK can take a world lead in this field, being a recognized international leader in Statistics; and OxWaSP is ideally placed to realize the potential of this opportunity. The Centre is focused on a new type of training for a new type of graduate statistician in statistical methodology and computation that is scalable to big data. We will bring a new focus on training for research, by teaching directly from the scientific literature. Students will be thrown straight into reading and summarizing journal papers. Lecture-format contact is used sparingly with peer-to-peer learning central to the training approach. This is teaching and learning for research by doing research. Cohort learning will be enhanced via group visits to companies, small groups reproducing results from key papers, student-orientated paper discussions, annual workshops and a three-day off-site retreat. From the second year the students will join their chosen supervisors in Warwick and Oxford, five in each Centre coming together regularly for research group meetings that overlap Oxford and Warwick, for workshops and retreats, and teaching and mentoring of students in earlier years. The Centre is timely and ambitious, designed to attract and nurture the brightest graduate statisticians, broadening their skills to meet the new challenge and allowing them to flourish in a focused, communal, research-training environment. The strategic vision is to train the next generation of statisticians who will enable the new data-intensive sciences and industries. The Centre will offer a vehicle to bring together industrial partners from across the two departments to share ideas and provide an important perspective to our students on the research challenges and opportunities within commercial and social enterprises. Student's training will be considerably enhanced through the Centre's visits, lectures, internships and co-supervision from global partners including Amazon, Google, GlaxoSmithKline, MAN and Novartis, as well as smaller entrepreneurial start-ups Deepmind and Optimor.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.