Powered by OpenAIRE graph

SHELL DEUTSCHLAND GMBH

Country: Germany

SHELL DEUTSCHLAND GMBH

3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 779579
    Overall Budget: 19,758,700 EURFunder Contribution: 9,998,040 EUR

    The REFHYNE project will install and operate a 10MW electrolyser from ITM Power at a large refinery in Rhineland, Germany, which is operated by Shell Deutschland Oils. The electrolyser will provide bulk quantities of hydrogen to the refinery’s hydrogen pipeline system (currently supplied by two steam methane reformers). The electrolyser will be operated in a highly responsive mode, helping to balance the refinery’s internal electricity grid and also selling Primary Control Reserve service to the German Transmission System Operators. The combination of hydrogen sales to the refinery and balancing payments create a business case which justifies this installation. This business case will be evaluated in detail, in a 2 year campaign of techno-economic and environmental analysis. The REFHYNE business model is replicable in markets with a similar regulatory structure to Germany. However, to expand this market to a GW scale, new business models will be needed. These will include valuing green hydrogen as an input to industrial processes (to meet carbon policy targets) and also on sales to H2 mobility markets. The REFHYNE project will gather real world data on these models and will use this to simulate the bulk electrolyser model in a range of market conditions. This will be used to produce reports on the conditions under which the electrolyser business models become viable, in order to provide the evidence base required to justify changes in existing policies. A campaign of targeted dissemination will ensure the results of these studies reach decision makers in large industrial sites, financiers, utilities and policy makers. The REFHYNE electrolyser will be the largest in the world and has been designed as the building block for future electrolysers up to 100MW and beyond. REFHYNE includes a design study into the options for a 100MW electrolyser at the Rhineland refinery, which will help prepare the market for deployments at this scale.

    more_vert
  • Funder: European Commission Project Code: 874997
    Overall Budget: 3,167,080 EURFunder Contribution: 1,494,420 EUR

    The objective of the proposal is to build the foundations of non-proprietary heavy duty refueling protocols for large tank systems (larger than 10kg), such as the ones found in heavy duty hydrogen applications. The consortium of PrHyde involves all the types of stakeholders linked with hydrogen HD refuelling. It and is therefore well suited to take end user needs, learnings from existing light duty protocols, learnings from the field, requirements for heavy duty applications, existing prior work (e.g. HyTransfer), considerations for improvements and requirements for safety into account and combine those into a proposal for a protocol that meets long term customer needs. Key metrics are refueling time, potential for cost reduction and ease of use. Although the consortium is formed by a large variety of companies, further partners are involved through a series of workshops to make sure the wider industry perspective is captured. The protocol to be developed is validated by simulation and experimental work on single tanks and multi-tank systems, showing that the proposed protocol works as intended and the understanding of thermodynamic effects on large, multi-vessel systems is adequate. Performance specifications for components and application-to-infrastructure communications are a planned by-product of the project. The results of the project will be used to develop an international standard for wide reach and adaptation outside of the project scope. The work will enable the widespread deployment of hydrogen for heavy duty applications, such as trucks, trains, etc. but also transport systems. The results are both a valuable guidance for station design, but also the prerequisite for the deployment of a standardized, cost effective infrastructure. To maximize impact, solutions are developed for pressure levels of 35MPa, 50MPa and 70MPa and non-gaseous storage options are analyzed and benchmarked against current state of the art storage and refueling performance.

    more_vert
  • Funder: European Commission Project Code: 101036970
    Overall Budget: 148,956,000 EURFunder Contribution: 32,431,600 EUR

    REFHYNE II will install a 100MW PEM electrolyser at Rheinland refinery in Cologne, Germany, using renewable power to produce green hydrogen and oxygen, which will be fed-in to the existing refinery networks to decarbonise refinery operations. The electrolyser will be based on a state of the art 5MW PEM stack integrated into pre-engineered 20MW electrolyser trains, with factory assembled balance of plant to reduce the amount of bespoke work required to integrate electrolysers into new sites. The project will be delivered by the same team responsible for the REFHYNE project that has installed a 10MW PEM electrolyser at the same site, exploiting the experience of the consortium to deliver a timely and cost-effective project. REFHYNE II will achieve a viable business case for large-scale electrolysis at refineries by valorising the hydrogen and oxygen streams in the refinery and receiving RED credits for the hydrogen produced, while minimising the cost of hydrogen through improvements in efficiency and capital cost. A research task will explore the upgrading of waste heat to higher temperatures for use in the refinery, to further improve the business case. Power will be sourced through novel PPAs with named renewable plants. Emissions avoidance will be achieved by displacing the hydrogen currently produced on-site through SMR and adapting the refinery to allow the electrolyser to act as a flexible load and hence contract direct with renewable generators, to increase renewable penetration into the grid. Research work packages will support the deployment of 100MW+ scale electrolysers at refineries and industrial sites across Europe and enable GW-scale electrolysis systems to be implemented. Finally, a thorough dissemination work package will exploit the results of the project by delivering key messages to target audiences, and supporting three fast follower sites (of which at least two will be located in EU13 countries) to rapidly replicate the results of the project.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.