Powered by OpenAIRE graph

BDR Thermea Group B.V.

BDR THERMEA GROUP BV
Country: Netherlands

BDR Thermea Group B.V.

3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 874983
    Overall Budget: 2,468,830 EURFunder Contribution: 2,468,830 EUR

    THyGA main goal is to enable the wide adoption of hydrogen and natural gas (H2/NG) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. For this purpose, THyGA will: •Screen the portfolio of technologies in the domestic and commercial sectors and assess theoretically the impact of hydrogen / natural gas admixture in order to have a quantitative segmentation of the gas appliance market and a selection of the most adequate products to be tested •Test up to 100 residential and commercial gas appliances (hobs, boilers, CHP, Heat pumps, etc.) and how 200 Million of European gas appliances will react to various H2 concentration scenarios •Benchmark and develop pre-certification protocols (test gases) for different level of H2 in natural gas for coming integration in standardization, these protocols will be validated through tests •Make recommendations for manufacturers, decision makers and end-users along the gas value chain to enable mitigation strategies for retrofit THyGA will provide an extensive understanding of previous projects or studies related to H2NG admixture utilization with domestic and commercial appliances. Through extensive testing programme, the project will establish the impact of hydrogen concentration in natural gas on safety and performances of a large set of domestic and commercial appliances. Hence, THyGA will support recommendations for revising EN or ISO standards or drafting new standards and will fully support and secure FCH-JU’s “Hydrogen Roadmap Europe” (2019). THyGA project gathers 9 renowned partners including 4 research centres, 3 industries, 1 SME, and 1 association covering the whole value chain of natural gas. The extensive advisory panel includes manufacturers, European and International Associations and DSOs included in H2/NG blends projects ensuring a constant challenge of the processed results and a great opportunity for a wide dissemination/communication plan to share results.

    more_vert
  • Funder: European Commission Project Code: 700339
    Overall Budget: 91,681,904 EURFunder Contribution: 33,932,800 EUR

    PACE is a major initiative aimed at ensuring the European mCHP sector makes the next move to mass market commercialisation. The project will deploy a total of 2,650 new fuel cell microCHP units with real customers and monitor them for an extended period. This will: - Enable fuel cell mCHP manufacturers to scale up production, using new series techniques, and increased automation. By 2018, four leading European manufacturers (Bosch, SOLIDpower, Vaillant and Viessmann) will have installed capacity for production of over 1,000 units/year (each will install over 500 units in PACE). These production lines will test the manufacturing techniques which will allow for mass market scale up and the reductions in unit cost which will come from associated economies of scale. - Allow the deployment of new innovations in fuel cell microCHP products, which reduce unit cost by over 30%, increase stack lifetime to over 10 years (by end of the project) and improve the electrical efficiency of all units. - Create a large dataset of the performance of the units, which will demonstrate the readiness of fuel cell mCHP as a mass market product. This will prove that fuel cell mCHP can be a leading contributor to reducing primary energy consumption and GHG emissions across Europe. - Allow the units in the trial to be pooled in a large scale test of the concept of aggregating and controlling the output from mCHP to act as a virtual power plant. This will be achieved in a project run by EWE on a section of the German grid earmarked for smart grid trials. - Act as the basis for an effort to standardise mCHP products in Europe, helping create a more efficient market for both installers and component suppliers. The project will provide an evidence base which will be used in a dissemination campaign targeting policy makers (who can provide supportive policies for the next wave of mCHP roll-out) and increasing awareness of the technology within the domestic heating sector (main route to market).

    more_vert
  • Funder: European Commission Project Code: 818329
    Overall Budget: 11,604,900 EURFunder Contribution: 8,999,820 EUR

    Heat Pump and solar appliances are the most social accepted residential Renewable Energy based energy systems. SunHorizon will demonstrate up to TRL 7 innovative and reliable Heat Pump solutions (thermal compression, adsorption, reversible) that acting properly coupled and managed with advanced solar panels (PV, Hybrid, thermal) can provide heating and cooling to residential and tertiary building with lower emissions, energy bills and fossil fuel dependency. A Cloud based functional monitoring platform will be realised in the project to be the “performance data mine” for the development of Data Driven/KPI oriented optimized algorithms and tools to predict maintenance, optimize the management towards maximisation of solar exploitation and give to the manufacturer inputs for new installation design, via an innovative “robust design under uncertainty approach” which aims to overcome classical H&C equipment oversizing due to safety factors . This monitoring platform will also drive smart end user interfaces that will be applied at building level to collect thermal comfort data towards a new end-user driven H&C control system. SunHorizon tools will be applicable not only to proposed solar coupled HPs, but to all H&C appliances towards a global increasing efficiency of EU H&C stock and its decarbonisation. 5 low emission H&C Technology packages (TPs) will be tested coupling HP and solar installation. SunHorizon aims to be a breakthrough demonstration to market project involving 21 partners and 8 demosites all around EU focusing its activities on “reducing system costs and improving performance as well as optimising existing technologies for H&C applications”. SunHorizon will be focused on three main research pillars interacting each other towards project objectives achievement, demonstration and replication: i) OPTIMIZED DESIGN, ENGINEERING AND MANUFACTURING OF SUNHORIZON TECHNOLOGIES ii) SMART FUNCTIONAL MONITORING FOR H&C,iii) KPI DRIVEN MANAGEMENT AND DEMONSTRATION.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.