Powered by OpenAIRE graph

Catal International Ltd

Catal International Ltd

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/J005029/1
    Funder Contribution: 389,014 GBP

    The gasification of biomass wastes represents a major thermochemical route to produce a high energy value hydrogen and methane rich syngas from a source which is renewable and CO2-neutral. Coupled with CO2 capture, the process offers a pre-combustion route to carbon capture sequestration for industrial power and electricity production. However, one of the major issues in the gasification process is the production of tar. Tar is a complex mixture of condensable hydrocarbons. The formation of tar causes major process and syngas use problems, including tar blockages, plugging and corrosion in downstream fuel lines, filters, engine nozzles and turbines. This proposal seeks to develop advanced triple function nano-nickel catalysts for, tar removal, enhanced hydrogen/methane production and CO2 capture and thereby produce high yield, clean, high calorific value syngas from the gasification of biomass/waste. Novel catalysts with homogeneous, well dispersed nano-Ni particles on a high-surface functional structured support, will be produced and examined in relation to the process conditions of gasification of biomass wastes for syngas quality in a continuous operation. The mechanisms of tar reactions, catalyst coke formation and sintering will be developed throughout the programme enabling catalysts to be designed to maximise and predict syngas quality from the process of biomass/waste gasification. The project benefits from the collaboration of a gasification system manufacturer and a catalysts development company who will aid the scale up of the catalyst preparation and trials in full scale gasification systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W019221/1
    Funder Contribution: 1,168,550 GBP

    Environmental and economic concerns related to the excessive use of fossil fuels, together with opportunities in circular economy and carbon negative technologies are paving the way for a fundamental reorganisation of the chemical industry. Oil refineries are being redesigned to couple petrochemical processes with bio-based productions and new thermo-chemical technologies more suited for small-scale operation. In this context, the invention of new (or restructured) processes for the synthesis of renewable intermediates, such as olefins generated from biomass is of crucial importance, since these molecules are fundamental building blocks for polymers, fuels and chemical industry. In order to unlock the transition to bio-substitutes in energy and manufacturing sectors, resource efficiency, process flexibility and intensification are of critical importance. To achieve these goals, we propose to employ a Nature-Inspired Solution (NIS) methodology, as a systematic platform for innovation and to inform transformative technology. The NIS methodology will be used to design and optimise modular bio-syngas conversion methods to manufacture "green" chemical products, including bio-olefins, at a scale suitable for decentralised applications. The research will focus on the novel concept of Sorption Enhanced Olefin Synthesis (SEOS), and the integrated design and performance of key system components (Synthesis Reactor - Catalysts Configuration - Life Cycle Analysis) to provide information on the underpinning reaction mechanisms, engineering performance and system dynamics that will facilitate deployment of future bio-based manufacturing plants.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V054627/1
    Funder Contribution: 4,836,820 GBP

    The Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.