Catal International Ltd
Catal International Ltd
3 Projects, page 1 of 1
assignment_turned_in Project2012 - 2015Partners:University of Leeds, University of Leeds, Catal International Ltd, Catal International Ltd, ITI Energy (United Kingdom) +1 partnersUniversity of Leeds,University of Leeds,Catal International Ltd,Catal International Ltd,ITI Energy (United Kingdom),ITI EnergyFunder: UK Research and Innovation Project Code: EP/J005029/1Funder Contribution: 389,014 GBPThe gasification of biomass wastes represents a major thermochemical route to produce a high energy value hydrogen and methane rich syngas from a source which is renewable and CO2-neutral. Coupled with CO2 capture, the process offers a pre-combustion route to carbon capture sequestration for industrial power and electricity production. However, one of the major issues in the gasification process is the production of tar. Tar is a complex mixture of condensable hydrocarbons. The formation of tar causes major process and syngas use problems, including tar blockages, plugging and corrosion in downstream fuel lines, filters, engine nozzles and turbines. This proposal seeks to develop advanced triple function nano-nickel catalysts for, tar removal, enhanced hydrogen/methane production and CO2 capture and thereby produce high yield, clean, high calorific value syngas from the gasification of biomass/waste. Novel catalysts with homogeneous, well dispersed nano-Ni particles on a high-surface functional structured support, will be produced and examined in relation to the process conditions of gasification of biomass wastes for syngas quality in a continuous operation. The mechanisms of tar reactions, catalyst coke formation and sintering will be developed throughout the programme enabling catalysts to be designed to maximise and predict syngas quality from the process of biomass/waste gasification. The project benefits from the collaboration of a gasification system manufacturer and a catalysts development company who will aid the scale up of the catalyst preparation and trials in full scale gasification systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cf7a2673738ed1c370a6fd18390b074b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cf7a2673738ed1c370a6fd18390b074b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Particulate Solid Research Inc, Catal International Ltd, Wood Group, Catal International Ltd, Advanced Biofuel Solutions LTD +8 partnersParticulate Solid Research Inc,Catal International Ltd,Wood Group,Catal International Ltd,Advanced Biofuel Solutions LTD,Sabic Americas, Inc.,IFP New Energy,Particulate Solid Research,Advanced Biofuel Solutions LTD,Sabic Americas, Inc.,UCL,Wood Group,IFP Energies nouvellesFunder: UK Research and Innovation Project Code: EP/W019221/1Funder Contribution: 1,168,550 GBPEnvironmental and economic concerns related to the excessive use of fossil fuels, together with opportunities in circular economy and carbon negative technologies are paving the way for a fundamental reorganisation of the chemical industry. Oil refineries are being redesigned to couple petrochemical processes with bio-based productions and new thermo-chemical technologies more suited for small-scale operation. In this context, the invention of new (or restructured) processes for the synthesis of renewable intermediates, such as olefins generated from biomass is of crucial importance, since these molecules are fundamental building blocks for polymers, fuels and chemical industry. In order to unlock the transition to bio-substitutes in energy and manufacturing sectors, resource efficiency, process flexibility and intensification are of critical importance. To achieve these goals, we propose to employ a Nature-Inspired Solution (NIS) methodology, as a systematic platform for innovation and to inform transformative technology. The NIS methodology will be used to design and optimise modular bio-syngas conversion methods to manufacture "green" chemical products, including bio-olefins, at a scale suitable for decentralised applications. The research will focus on the novel concept of Sorption Enhanced Olefin Synthesis (SEOS), and the integrated design and performance of key system components (Synthesis Reactor - Catalysts Configuration - Life Cycle Analysis) to provide information on the underpinning reaction mechanisms, engineering performance and system dynamics that will facilitate deployment of future bio-based manufacturing plants.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15ae26134319e6b8348838a6b35220b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::15ae26134319e6b8348838a6b35220b9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:Mineral Products Association, Netzsch Instruments, Saica Paper UK Ltd, Celsa Steel UK, Encirc (United Kingdom) +128 partnersMineral Products Association,Netzsch Instruments,Saica Paper UK Ltd,Celsa Steel UK,Encirc (United Kingdom),Innovate UK,Morgan Advanced Materials,IS-Instruments Ltd,Liberty House Group (UK),Morgan Advanced Materials plc (UK),Vesuvius (United Kingdom),Breedon Cement Ltd,Capital Refractories Limited,Industry Wales,Society of Glass Technology,EnergyNest AS,CERAM Research,Guardian Industries (International),IOM3,Norton Aluminium Ltd,Beatson Clark Limited,Morgan Advanced Materials (United Kingdom),Confederation of Paper Industries,Catal International Ltd,NWL,North East of England Process Industry Cluster (United Kingdom),British Glass,Chemical Industries Association Ltd,URM (UK) Limited,Kimberly-Clark Limited (UK),Capital Refractories Limited,Liberty House Group (UK),Ansys UK Ltd,KNOWLEDGE TRANSFER NETWORK LIMITED,[no title available],Sheffield Refractories Ltd,Mineral Products Association,NSG Holding (Europe) Limited,Beatson Clark Limited,Jayplas (J&A Young (Leicester) Ltd),British Glass,IS Instruments (United Kingdom),Texon (UK),EnergyNest (Norway),Knowledge Transfer Network,Power Minerals Ltd,International Synergies Ltd,CLT Carbon Limiting Technologies,Celsa Steel UK,Guardian Industries (United States),ANSYS,Fives Stein Limited,CRODA EUROPE LIMITED,Cast Metals Federation,LafargeHolcim,VESUVIUS UK LTD,CLT Carbon Limiting Technologies,Cast Metals Federation (United Kingdom),AMETEK (UK),F.I.C (UK) Limited,Hanson Heidelberg Cement Group,NETZSCH (UK),Emerson Advanced Design Center,Hanson Heidelberg Cement Group,Alpek Polyester UK Ltd,Glass Futures Ltd,Zentia (Ceiling Solutions Limited) (UK),LafargeHolcim (France),Almath Crucibles Ltd,Siemens plc (UK),Zentia (Ceiling Solutions Limited) (UK),Aluminium Federation Ltd,International Synergies Ltd,Heraeus (United Kingdom),Breedon Cement Ltd,Kimberly-Clark Limited (UK),Power Minerals Ltd,SIEMENS PLC,British Ceramic Confederation,Trent Refractories Ltd,Society of Glass Technology,CRODA EUROPE LTD,Glass Technology Services Ltd GTS,NSG Group (UK),Luxfer MEL Technologies,AkzoNobel UK,Norton Aluminium Ltd,Fives Stein Limited,Cranfield University,Aluminium Federation Ltd,Saint Gobain Glass Industry,Greenology (Teeside) Limited,Confederation of Paper Industries,Jayplas (J&A Young (Leicester) Ltd),Materials Processing Institute (MPI),Imerys (United Kingdom),Constellium UK Ltd,Croda (United Kingdom),Northumbrian Water Group plc,Magnet Applications Ltd,North East Process Industry ClusterNEPIC,Diageo plc,Emerson Advanced Design Center,CRANFIELD UNIVERSITY,F.I.C (UK) Limited,Sheffield Refractories Ltd,Lucideon (United Kingdom),British Ceramic Confederation,AkzoNobel (United Kingdom),Glass Technology Services,Greenology (Teeside) Limited,Heraeus Electro-Nite,Alpek Polyester UK Ltd,Chemical Industries Association Ltd,Constellium (United Kingdom),North East Process Industry ClusterNEPIC,AMETEK UK,Almath Crucibles Ltd,Encirc Ltd,Glass Futures Ltd,Institute of Materials, Minerals and Mining,Industry Wales,Texon (UK),Diageo (United Kingdom),AkzoNobel UK,Imerys,Catal International Ltd,Saica Paper UK Ltd,British Glass,Materials Processing Institute (MPI),Bunting Magnetics Europe (UK),Saint Gobain Glass Industry,URM (UK) LimitedFunder: UK Research and Innovation Project Code: EP/V054627/1Funder Contribution: 4,836,820 GBPThe Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::312753aaf93758c5aa6b112c8a46d38a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::312753aaf93758c5aa6b112c8a46d38a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu