Powered by OpenAIRE graph

Designability

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N009568/1
    Funder Contribution: 295,549 GBP

    While CAD systems have been immensely beneficial they require specialist knowledge and expertise for their operation, particularly where advanced modelling, simulation and analysis (virtual prototyping) is to be used. This requirement, combined with their dependence upon 2D digital interaction limits user engagement, constrains design process activities and restricts design performance. This includes the nature and level of collaboration and co-creation within design teams, with users and wider stakeholders; the accessibility of virtual prototyping tools including rapid prototyping; and the efficacy of the design (team) when undertaking tasks, such as ideation, design development, evaluation and DfX activities. To overcome these restrictions, the concept of a Lego-inspired tangible interface for CAD, virtual prototyping (VP) and rapid prototyping (RP) is to be investigated. The corresponding research programme comprises two interrelated research streams. The first addresses the technical and HCI challenges associated with the creation of real-time physical-to-digital model integration and user-in-the-loop digital-to-physical model integration. Both of these topics offer significant future research opportunities in their own right. The second research stream concerns investigation of the affordances, complementarity (with VP tools) and limitations of a Lego-inspired tangible interface for improving collaboration/co-creation, design performance and accessibility to VP and RP. Given the exploratory nature of the research three engineering domains will be considered: industrial design (assistive technology), special purpose machinery and construction.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S026096/1
    Funder Contribution: 1,181,150 GBP

    There are over 10.8 million disabled people living in the UK today. Nearly 6.5 million have mobility impairments. These numbers are growing as the median population age increases and age-related mobility issues due to musculoskeletal and neurological conditions such as arthritis and stroke, become more prevalent. Rehabilitation helps people improve and maintain their abilities in everyday life, but currently patient outcomes are hampered in two ways: Firstly, there is a lack of easy to use dynamic tools to help therapists to accurately analyse their patients' gait and mobility performance and devise the most effective personalised training and rehabilitation programmes. Secondly, as more and more rehabilitation occurs at home and requires patients to practice in the absence of a therapist, better ways to support in-home mobility and training are needed, to enable patients to achieve their potential in everyday mobility tasks. The FREEHAB Healthcare Impact Partnership will develop soft wearable rehabilitative devices to directly address these needs. FREEHAB will build on discoveries from our previous EPSRC Right Trousers project in which we discovered new soft materials that can be used like artificial muscles. These include 3D printable electroactive gel materials and soft, but strong, pneumatic chains that change they shape when inflated and can exert considerable forces. These materials will be used to develop devices to help people to walk, stand and to move from sitting to standing. Together with integrated sensing technology we will make devices that physiotherapists can use to accurately pinpoint limitations in their patients' movements, thus enabling them to plan personalised training programmes. We will also make simpler devices that the patient can use to enhance their mobility activities and exercises with confidence when a therapist is not with them. To do this we will work in partnership with physiotherapists in NHS services and in private practice, with people who have personally experienced physiotherapy for their mobility problems, and with business partners who are experienced in bringing rehabilitation and assistive technology devices through from concept to market. We will initially determine what patient and clinical considerations we need to take into account to design and develop the devices. We will continually consult with partners for their ideas and opinions as the devices are developed. We will plan how FREEHAB technologies will progress from research and development through translation into clinical trials, and to bring the devices into the supply chain after the project is over. This will be undertaken with advice from our clinical and business partners and with regard to regulation of devices for use in the NHS and intellectual property for commercialisation. When we have designed and manufactured our prototype devices we will test them to determine how physiotherapists find them useful for assessment and how patients find them comfortable and useful for carrying out their physiotherapy training and rehabilitation. We will collect their views alongside formal measurements of patients' performance when they are wearing the devices compared to their performance when using a conventional orthotic brace. We will ensure we have the right regulatory and ethical approval for this early proof of concept testing. The results of our evaluations will help us to prepare for the next stages in product development and clinical testing needed to bring the devices into use in the NHS.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S005099/1
    Funder Contribution: 1,723,460 GBP

    This fellowship will bring together a variety of people from different walks of life, including academics, industry, civil societies, policy makers and members of the public, in order to create new ways of developing and managing technological innovations. There is often a tension between the economic needs for increasing technological innovation and the ways in which these innovations may be developed responsibly - that is in a manner that is societally acceptable and desirable. We will develop an approach that aims to anticipate not only the positive outcomes but also the potentially negative consequences of technological innovations for society. We will draw on this and an understanding of people's lived rights and obligations to provide creative resources and methods for designers to develop responsible and accountable new technologies. Responsible Innovation lies at the heart of technologies in the Digital economy that aim to promote trust, identity, privacy and security. Although it has been drawn on in other scientific domains, as yet we have no complete example of how responsible innovation can be successfully applied in the DE sector. The fellowship will consider a motivating example to develop responsible innovation in action. We will look into one particular domain of technology and develop an agile process which will take account of the views of a wide range of people in a fast-changing context, in order to have some influence over the trajectory of an innovation. We will focus on the domain of social robots, those which interact with people and make decisions about what to do on their own accord. Because they make their own decisions in order to perform actions, we need to be able to recover what they did and why they did it, when things seem to go wrong. We will develop an ethical black box (EBB) through which the social robot will be able to explain its behaviour in simple and understandable ways. The development of the EBB will be an example of responsible innovation. We will test this out in particular accident investigations as a social process and we will do this in 3 different study domains. In the final stages of the fellowship, we will show the outcomes of the technological development and the investigations through a variety of means, including through the web and a final public showcase event. This will be to a variety of people including the general public, policy makers, and developers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R032696/1
    Funder Contribution: 1,653,340 GBP

    An orchestration of physical and digital models of varying fidelities, and in differing sequences, is required for the product development process. The choice of these models depends upon the: skills of the design team; resources and tools available; purpose of the model; and nature of the design task. In all engineering disciplines a combination of digital and physical models is necessary to support the progression of the design process, with each model and iteration thereof generating new understanding and knowledge to inform decision-making. While extensive modelling - both physical and digital - is imperative to develop right-first-time products, the parallel use of digital and physical models gives rise to two interrelated issues. These are: the lack of revision control for physical prototypes; and the need for designers to manually inspect, measure, and interpret modifications to either digital or physical models, for subsequent update of the other. This manual process of revision control for physical models and what is referred to herein as 'twinning of digital-physical models' impacts on the cost, quality and time of the design and development process. In particular, the lack of revision control leads to multiple near-identical model instances, which contribute to issues of process management, traceability, decision-making, design duplication and inefficiency, and design rationale capture. It also makes optimisation of the product development process in terms of the digital-physical tool-chain all but impossible. In this project we will fundamentally redefine the revision control and twinning processes for digital and physical models from a manual, cumbersome, error-prone and expensive procedure to one that is seamlessly integrated (digital-to-physical and physical-to-digital), rapid, reliable and knowledge rich.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S021795/1
    Funder Contribution: 5,114,490 GBP

    FARSCOPE-TU (Towards Ubiquity) will train a new generation of "T-shaped roboticists" in the priority area of Robotics and Autonomous Systems (RAS). T-shaping means graduates will combine the depth of individual PhD research experience with broad awareness of the priority area, including technical tools and topics spanning multiple disciplines. Breadth will be enhanced by strong understanding of the industrial and societal context in which future RAS will operate. These graduates will meet the need for future innovators in RAS, evidenced by industrial partner demand and growing research investment, to deliver potential UK global leadership in the RAS area. That need spans many applications and technologies, so FARSCOPE-TU adopts a broad and ambitious vision of RAS ubiquity, motivating the research challenge to make RAS that are significantly more interactive with their environments. The FARSCOPE-TU training experience has been carefully designed to support T-shaping by bringing in students from many disciplines and upskilling them through an integrated programme of individual research and cohort activities, which mix together throughout the four years of study. The FARSCOPE-TU research challenge necessitates multidisciplinary thinking, as the enabling technologies of computer science and engineering interface with questions of psychology, biology, policy, ethics, law and more. Students from this diverse range of backgrounds will be recruited, with reskilling supported through fundamental training and peer learning at the outset. The first year will be organized as a formal programme of study, equivalent to a Masters degree. The remaining three years will focus on PhD research, punctuated by mandatory cohort-based training to refresh first year content and all subject to annual progress monitoring. Topics will include responsible innovation, enterprise, public engagement, and industrial context. FARSCOPE-TU has formed partnerships with 19 organizations who share its vision, have helped co-create the training programme, and span technologies and applications that align with the CDT's broad interpretation of RAS. Partner engagement will be central to covering industrial context training. Partners and the FARSCOPE-TU team have also co-created a flexible programme of engagement mechanisms, designed to support a diverse set of partner sizes and interests, to allow collaborations to evolve, and to be responsive to potential new partners. The programme includes mentoring, mutual training by and for partners, collaboration on research and industry projects, sponsorship and leveraged funding opportunities. Partners have committed £2.5M in leverage to support FARSCOPE-TU including 15 studentships from the hosts and 12 sponsored places from industry. FARSCOPE-TU will promote equality, diversity and inclusion both internally and, since the vision includes robots interacting with society, in its research. For example, FARSCOPE-TU could consider how training data bias would affect equality of interaction between humans and home assistance robots. FARSCOPE-TU will instigate a high-profile Single Equality Scheme named "Inclusive Robotics" that combines operational initiatives, including explicit targets, with events and training, linked to responsible innovation and human interaction. FARSCOPE-TU will deliver a joint PhD award, badged by partners University of Bristol and University of the West of England. The CDT will be run through their established Bristol Robotics Lab partnership, providing over 4,500sqm dedicated RAS laboratory space and a community of over 50 supervisors. BRL's existing FARSCOPE CDT provides the security of a strong track record, with 46 students recruited in four cohorts so far and an approved joint programme. FARSCOPE-TU builds on that experience with a revised first year to support diverse intake and early partner engagement, enhanced contextual training, the new T-shape concept and the wider ubiquity vision.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.