Powered by OpenAIRE graph

Naval Group (Ireland)

Naval Group (Ireland)

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/R014779/1
    Funder Contribution: 262,102 GBP

    The forecasting of marine weather, waves and tidal currents using models and in-situ measurements is vital for offshore operations and maintenance (O&M) in the marine infrastructure and marine renewable energy (MRE) sectors. Offshore O&M is limited by strict wave height thresholds at the offshore point of operations (typically 1.5m) and with the UK set to spend £2bn per annum by 2025 on O&M for the offshore wind industry alone the prediction of viable working windows for O&M is critical. In the tidal stream MRE sector the combined forces of waves and tidal currents on underwater tidal turbines can lead to dangerously high physical and electrical loads placed on equipment and infrastructure. Poor knowledge, and thus prediction of the local variability in weather, wave and tide conditions result in conservative thresholds for MRE operations. This, in turn, reduces the time MRE devices are in operation (and therefore energy generation), increasing investor risk and harming the financial development of the MRE sector as a whole. Existing wave and current monitoring and forecasting technologies rely on expensive in-situ measurements of the marine environment (e.g., floating wave buoys and devices on the sea bed) and models driven by these measurements or other large-scale simulations. Although very precise, the project partners have identified traditional wave and current monitoring techniques to be inadequate in terms of spatial coverage, timeliness and accuracy in complicated, high-energy coastal environments. These environments have previously proven to be difficult for wave and current observation and validation due to high equipment costs and risks of failure. As such there is a paucity of reliable, large-scale measurements of waves and currents in these high-energy marine environments. Marine navigational radar ('X-band') is a mature technology for the remote sensing of the marine environment, capable of generating estimates of tidal current speed, ocean wave parameters and water depths over wide areas. However the current state-of-the-art in X-band radar oceanography has been found lacking in the high-energy, dynamic and complicated coastal environments that marine energy projects are operating. This project aims to develop a step-change in the way we process radar data to generate measurements of the marine environment, paving the way for a system that can produce the environmental information the marine industry requires. NOC has a 20 year history at the forefront of marine radar oceanography and is well-placed to deliver this much needed development. To achieve this aim an open-source wave model will be integrated with the NOC's tried-and-tested radar analysis toolbox to produce a hybrid model/observation system. This system will combine modelled and observed wave information in such a way that minimises the errors in both; effectively generating a 'most likely' wave measurement over wider area every 10-15 minutes in near-real-time. The system will be developed using radar data and validated using ground-truth data recorded at the European Marine Energy Centre (EMEC) on Orkney; the world's largest and most successful MRE test facility. Once validated, the system will then be demonstrated in a real-world setting at the OpenHydro test platform at EMEC. This project includes researchers with expertise radar oceanography, marine observation and the numerical modelling of the marine environment. Our project partners include EMEC, the marine energy company OpenHydro and JBA consulting; a company at the cutting-edge of operational forecasting. This new and innovative environmental monitoring system will be developed with the guidance of our partners and the successful system used to supply the basis for high-impact solutions for the partners and their clients.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/R014779/2
    Funder Contribution: 43,918 GBP

    The forecasting of marine weather, waves and tidal currents using models and in-situ measurements is vital for offshore operations and maintenance (O&M) in the marine infrastructure and marine renewable energy (MRE) sectors. Offshore O&M is limited by strict wave height thresholds at the offshore point of operations (typically 1.5m) and with the UK set to spend £2bn per annum by 2025 on O&M for the offshore wind industry alone the prediction of viable working windows for O&M is critical. In the tidal stream MRE sector the combined forces of waves and tidal currents on underwater tidal turbines can lead to dangerously high physical and electrical loads placed on equipment and infrastructure. Poor knowledge, and thus prediction of the local variability in weather, wave and tide conditions result in conservative thresholds for MRE operations. This, in turn, reduces the time MRE devices are in operation (and therefore energy generation), increasing investor risk and harming the financial development of the MRE sector as a whole. Existing wave and current monitoring and forecasting technologies rely on expensive in-situ measurements of the marine environment (e.g., floating wave buoys and devices on the sea bed) and models driven by these measurements or other large-scale simulations. Although very precise, the project partners have identified traditional wave and current monitoring techniques to be inadequate in terms of spatial coverage, timeliness and accuracy in complicated, high-energy coastal environments. These environments have previously proven to be difficult for wave and current observation and validation due to high equipment costs and risks of failure. As such there is a paucity of reliable, large-scale measurements of waves and currents in these high-energy marine environments. Marine navigational radar ('X-band') is a mature technology for the remote sensing of the marine environment, capable of generating estimates of tidal current speed, ocean wave parameters and water depths over wide areas. However the current state-of-the-art in X-band radar oceanography has been found lacking in the high-energy, dynamic and complicated coastal environments that marine energy projects are operating. This project aims to develop a step-change in the way we process radar data to generate measurements of the marine environment, paving the way for a system that can produce the environmental information the marine industry requires. NOC has a 20 year history at the forefront of marine radar oceanography and is well-placed to deliver this much needed development. To achieve this aim an open-source wave model will be integrated with the NOC's tried-and-tested radar analysis toolbox to produce a hybrid model/observation system. This system will combine modelled and observed wave information in such a way that minimises the errors in both; effectively generating a 'most likely' wave measurement over wider area every 10-15 minutes in near-real-time. The system will be developed using radar data and validated using ground-truth data recorded at the European Marine Energy Centre (EMEC) on Orkney; the world's largest and most successful MRE test facility. Once validated, the system will then be demonstrated in a real-world setting at the OpenHydro test platform at EMEC. This project includes researchers with expertise radar oceanography, marine observation and the numerical modelling of the marine environment. Our project partners include EMEC, the marine energy company OpenHydro and JBA consulting; a company at the cutting-edge of operational forecasting. This new and innovative environmental monitoring system will be developed with the guidance of our partners and the successful system used to supply the basis for high-impact solutions for the partners and their clients.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S000747/1
    Funder Contribution: 9,193,410 GBP

    The UK is at the forefront of the development, adoption and export of Offshore Renewable Energy (ORE) technologies: offshore wind (OW), wave and tidal energy. To sustain this advantage, the UK must spearhead research and innovation in ORE, which will accelerate its adoption and widen the applicability of these technologies. Many organisations across the industry-academia spectrum contribute to ORE research and development (R&D) co-ordination and the ORE Supergen hub strategy will take a leadership role, integrating with these activities to guide and deliver fundamental research to advance the ORE sector. The role of the Supergen ORE hub is to provide research leadership for the ORE community to enable transformation to future scale ORE. The hub will articulate the vision for the future scale ORE energy landscape, will identify the innovations required and the fundamental research needed to underpin the innovation. It will also generate the pathway for translation of research and innovation into industry practice, for policy adaptation and public awareness in order to support the increased deployment of ORE technologies, reducing energy costs while increasing energy security, reducing CO2 emissions and supporting UK jobs. The hub will work closely with the ORE Catapult (ORECAT) and become well-connected with industry, government, the wider research community in the UK and internationally. It will bring together these groups to assemble the expertise and experience to define and target the innovations, research and actions to achieve the ambitious energy transformation envisioned for the UK. The new Supergen ORE hub will continue to support and build on the existing internationally leading academic capacity within these three research areas (OW, wave and tidal technology), whilst also enabling shared learning on common research challenges. The ORE hub will build a multi-disciplinary, collaborative approach, which will bring benefits through the sharing of best practice and exploitation of synergy, support equality and diversity and the development of the next generation of research leaders. The hub strategy provides an overview of research and innovation priorities, which will be addressed through multiple routes but linked through the hub, with activities designed to stimulate alignment across the research community and industry sectors to maximise engagement with prioritised research challenges through and beyond the hub time-scale. These include: 1. Networking and engagement activities to bring the research community together with industry and other stakeholders to ensure research efforts within the community are aligned, complementary and remain inspired by or relevant to industry challenges. This will include support and development of the ECR community to ensure sustainability and promote EDI within the sector as a whole. Actions will also be taken to identify potential cross over research synergies and opportunities for transfer of research between sectors and disciplines, both within and external to ORE. Furthermore, a structured communication plan built around progress of the community towards the sector research challenges will promote exploitation and commercialisation. 2. A set of core research work packages addressing priority topics selected and structured to maximize progress towards the sector objectives and building on the cross cutting expertise of the co-director team. 3. Targeted use of flexible fund as seed-corn activity leading to projects aligned with, and in partnership with, the hub.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.