Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology
Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology
4 Projects, page 1 of 1
assignment_turned_in ProjectPartners:Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Aquatische Ecologie, Wageningen University & Research, Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Centrum voor Milieuwetenschappen, Conservation Biology, Wageningen University & Research, Omgevingswetenschappen, Aquatische Ecologie & Waterkwaliteitsbeheer (AEW) +8 partnersKoninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO),Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Aquatische Ecologie,Wageningen University & Research,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Centrum voor Milieuwetenschappen, Conservation Biology,Wageningen University & Research, Omgevingswetenschappen, Aquatische Ecologie & Waterkwaliteitsbeheer (AEW),Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Computer Science, Pervasive Systems Group (PS),Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Centrum voor Milieuwetenschappen, Milieubiologie,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES),Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS),Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Centrum voor Milieuwetenschappen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology,Koninklijke Nederlandse Akademie van Wetenschappen, Data Archiving and Networked Services,Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Centrum voor Milieuwetenschappen, Afdeling Environmental Biology (CML-EB)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 175.2023.039In The Netherlands “the land of water” the ecological quality of ponds, ditches, wetlands and lakes is severely degraded due to escalating and interacting anthropogenic pressures including pollutants and climate change. SEFAP unites leading Dutch freshwater experimentalists, infrastructures and data scientists to provide a step forward in collaborative science and inland water ecology. By conducting experiments in SMART-enabled replicated mini-lake ecosystems, SEFAP will enable the future of our waters to be experimentally created and tested. In combination, the technical innovation and community-building of Dutch aquatic experimentalists will strengthen the ability to predict and mitigate undesirable futures in aquatic ecosystems.
more_vert assignment_turned_in Project2020 - 2021Partners:Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology, Radboud Universiteit Nijmegen, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Aquatische Ecologie en MilieubiologieRadboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology,Radboud Universiteit Nijmegen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Aquatische Ecologie en MilieubiologieFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS2.109Photosynthesis is presently the main process fuelling life on Earth, and considered the virtually sole source of primary production in most ecosystems. However, 3.8 billion years ago, early life derived its energy mainly from chemosynthesis, a process still fuelling life in the deep sea and other sunlight-deprived systems. Here, we hypothesize that, in addition to photosynthesis, chemosynthetic primary production is a major, but overlooked, secondary pathway fuelling shallow sea food webs. We propose to begin to test this paradigm-challenging idea in six temperate to tropical seagrass ecosystems around the world.
more_vert assignment_turned_in ProjectFrom 2024Partners:Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Afdeling Terrestrische Ecologie, Deltares, Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Aquatische Ecologie, Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica, Electrical Sustainable Energy, Photovoltaic Materials and Devices, Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO) +22 partnersKoninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Afdeling Terrestrische Ecologie,Deltares,Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO), Aquatische Ecologie,Technische Universiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica, Electrical Sustainable Energy, Photovoltaic Materials and Devices,Koninklijke Nederlandse Akademie van Wetenschappen, Nederlands Instituut voor Ecologie (NIOO),Radboud Universiteit Nijmegen,Universiteit Utrecht, Faculteit Geowetenschappen, Department of Sustainable Development, Environmental Governance,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Department of Environmental Science,Universiteit Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Water Resources (WRS),Deltares, Zee- en Kustsystemen,Universiteit Twente, Faculty of Geo-Information Science and Earth Observation (ITC),Koninklijke Nederlandse Akademie van Wetenschappen,Copernicus Institute for Sustainable Development,Universiteit Utrecht, Faculteit Geowetenschappen, Department of Sustainable Development, Copernicus Institute of Sustainable Development, Energy and Resources,Universiteit Utrecht, Faculteit Geowetenschappen, Department of Sustainable Development, Copernicus Institute of Sustainable Development, Environmental Governance,Universiteit Utrecht,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology,TNO (former ECN), Zonne-energie,TNO (former ECN),Hanze UAS,Deltares,Universiteit Utrecht, Faculteit Geowetenschappen, Department of Sustainable Development, Copernicus Institute of Sustainable Development, Environmental Sciences,Universiteit Utrecht,Technische Universiteit Delft, Faculteit Civiele Techniek en Geowetenschappen, Afdeling Hydraulic Engineering, Offshore Engineering,Technische Universiteit Delft,Radboud Universiteit Nijmegen,Universiteit TwenteFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: NWA.1507.21.001Solar systems are implemented at increasingly large scale to meet demands for sustainable energy, including placing them on inland waters. SPARKLES unites scientists and stakeholders across domains (energy, ecology, society) to develop nature-positive solutions for floating solar for humans and nature. By putting nature front and center we look for integrative solutions that solve multiple problems in the living environment, rather than creating trade-offs between humans and nature.
more_vert assignment_turned_in Project2022 - 9999Partners:Radboud Universiteit Nijmegen, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology, Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en InformaticaRadboud Universiteit Nijmegen,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES),Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Institute for Biological and Environmental Sciences (RIBES), Aquatic Ecology and Environmental Biology,Radboud Universiteit Nijmegen, Faculteit der Natuurwetenschappen, Wiskunde en InformaticaFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.M20.339Over millennia, peatlands have accumulated vast amounts of organic carbon (C) and are more important as C sinks than any other terrestrial ecosystem. Consequentially, peatlands are amongst the world’s best lines of defence against climate change. The rapidly changing climate is, however, affecting the C-sink function of peatlands. Peatland carbon dynamics pivot primarily around the key processes –production and decomposition– that are modulated by above- and belowground biotic communities. Recently, the importance of tight links between plant and soil biotic communities on ecosystem processes has become unambiguously clear. Analogous to the idea that species richness is an important driver for ecosystem processes and its resilience against climate change, yet less well understood, strong and diverse plant-soil biotic linkages may underlie the robustness of the ecosystem functions to enviro-climatic perturbations. In peatland ecosystems – the world’s densest C stores – the role of plant-soil biotic interactions in C dynamics, remains elusive. Furthermore, climate change can disrupt plant-soil biotic interactions and cause a rewiring, even erosion, in these links, with unknown consequences for future important ecosystem processes such as C cycling. Using an established enviro-climatic gradient across Europe, we will investigate how plant-soil biotic interactions affect peatland C dynamics. Specifically, we identify site-specific core plant-soil biotic networks and assess how apparent rewiring in plant-soil biotic interactions play out on C dynamics. We will use this newly gained knowledge on plant-soil biotic interactions to assess whether plant-soil biotic network structure, notably the diversity in multitrophic linkages, affects the stability of the peatland C-sink function to enviro-climatic change. Capitalising on this information, we will develop an unprecedented conceptual framework that uses plant-soil biotic networks to predict the future functioning and stability of the peatland natural capital – notably carbon sequestration. Outcomes of this work will thus enhance our mechanistic understanding of the effect of enviro-climatic change on the interactions between plant and soil biota that underlie C dynamics, which will form the basis for accurate site-specific predictive models on the future C-sink function of peatlands worldwide.
more_vert
