Hilleman Laboratories
Hilleman Laboratories
2 Projects, page 1 of 1
assignment_turned_in Project2012 - 2013Partners:Hilleman Laboratories (India), IITD, Biological E. Limited, Chinese Academy of Sciences, University of Southern California +7 partnersHilleman Laboratories (India),IITD,Biological E. Limited,Chinese Academy of Sciences,University of Southern California,UCL,CAS,Indian Institute of Technology (Delhi),Chinese Academy of Science,Hilleman Laboratories,USC,Biological E. LimitedFunder: UK Research and Innovation Project Code: EP/K004506/1Funder Contribution: 489,806 GBPThe importance of international collaborations in research is recognised both by individual researchers and by institutions and government, with studies showing that the average impact of publications resulting from these collaborations is significantly higher than that of papers with national co-authorship. This is a UCL-wide initiative to support a suite of networking, mobility and idea co-generation activities aimed at building and enhancing global links across five "Focus Areas" of the physical sciences and engineering. The long-term vision is to germinate and build new partnerships (namely in China and India), as well as cement and grow existing ones (in USA and Germany), resulting in world-class research collaborations and the exchange of leading expertise. The five research strands are based around UCL's disciplinary strengths in the areas of healthcare engineering, biochemical engineering, built environment and frontier areas of the physical sciences. The ultimate goal is to generate new, cutting edge insights with maximum potential for impact here in the UK, as well as mutual benefit overseas. Activities will include collaborative projects, researcher exchanges, secondments, workshops, high-level meetings and roadmapping exercises.
more_vert assignment_turned_in Project2017 - 2023Partners:Dalian Hissen BioPharm Co Ltd, CPI Ltd, NHS Blood and Transplant NHSBT, GlaxoSmithKline (Not UK), Incepta Pharmaceuticals Ltd +13 partnersDalian Hissen BioPharm Co Ltd,CPI Ltd,NHS Blood and Transplant NHSBT,GlaxoSmithKline (Not UK),Incepta Pharmaceuticals Ltd,MRC/UVRI Uganda Research Unit on AIDS,Hilleman Laboratories,Centre for Process Innovation (Dup'e),Dalian Hissen,NHS Blood and Transplant NHSBT,Imperial College London,Incepta Pharmaceuticals Ltd,VABIOTECH,Centre for Process Innovation,Darlington,MRC/UVRI Uganda Research Unit on AIDS,Hilleman Laboratories (India),VABIOTECH,GlaxoSmithKline (Global)Funder: UK Research and Innovation Project Code: EP/R013764/1Funder Contribution: 12,552,000 GBPVaccine manufacturing systems have undergone evolutionary optimisation over the last 60 years, with occasional disruptions due to new technology (e.g. mammalian cell cultures replacing egg-based systems for seasonal influenza vaccine manufacture). Global vaccination programmes have been a great success but the production and distribution systems from vaccines still suffer from costs associated with producing and purifying vaccines and the need to store them between 2 and 8 degrees C. This can be a challenge in the rural parts of low and middle income countries where 24 million children do not have access to appropriate vaccinations every year. An additional challenge is the need to rapidly respond to new threats, such as the Ebola and Zika viruses, that continue to emerge. The development of a "first responder" strategy for the latter means that there are two different types of challenges that future vaccine manufacturing systems will have to overcome: 1. How to design a flexible modular production system, that once a new threat is identified and sequenced, can switch into manufacturing mode and produce of the order of 10,000 doses in a matter of weeks as part of localised containment strategy? 2. How to improve and optimise existing manufacturing processes and change the way vaccines are manufactured, stabilised and stored so that costs are reduced, efficiencies increased and existing and new diseases prevented effectively? Our proposed programme has been developed with LMIC partners as an integrated approach that will bring quick wins to challenge 2 while building on new developments in life sciences, immunology and process systems to bring concepts addressing challenge 1 to fruition. Examples of strategies for challenge 1 are RNA vaccines. The significant advantage of synthetic RNA vaccines is the ability to rapidly manufacture many thousands of doses within a matter of weeks. This provides a viable business model not applicable to other technologies with much longer lag phases for production (viral vectors, mammalian cell culture), whereby procurement of the vaccine can be made on a needs basis avoiding the associated costs of stockpiling vaccines for rapid deployment, monitoring their on going stability and implementing a cycle of replacement of expired stock. In addition, low infrastructure and equipment costs make it feasible to establish manufacture in low-income settings, where all required equipment has potential to be run from a generator driven electrical supply in the event of power shortage. This fits the concept of a distributed, flexible platform technology, in that once a threat is identified, the specific genetic code can be provided to the manufacturing process and the doses of the specific vaccine can be produced without delay. Additional concepts that we will explore in this category include the rapid production of yeast and bacterially expressed particles that mimic membrane expressed components of pathogenic viruses and bacteria. Examples of strategies for challenge 2 build on our work on protein stabilisation which has been shown to preserve the function of delicate protein enzymes at temperatures over 100 degrees C. We shall exploit this knowledge to develop new vaccine stabilisation and formulation platforms. These can be used in two ways: (a) to support the last few miles of delivery from centralised cold chains to patients through reformulation and (b) for direct production of thermally stable forms, i.e. vaccines that retain their activity for months despite being not being refrigerated. We believe that the best way to deliver these step changes in capability and performance is through a team-based approach that applies deep integration in two dimensions: between UK and LMIC partners to ensure that all the LMIC considerations are "baked in" from the start and between different disciplines accounting for the different expertise that will be required to meet the challenges.
more_vert
