Powered by OpenAIRE graph

BiPVco

10 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/P032591/1
    Funder Contribution: 6,580,120 GBP

    In November 2016 the UK Government mounted a technical trade mission to India. During this visit the delegation witnessed some of the worst aerial pollution in Delhi's history. At times the air quality was contaminated with 999 mg per cubic metre of particulates almost five times the emission consent of an iron making coke oven! India will be the World's largest economy potentially as early as 2030 requiring a total transformation in energy generation. At the Trade summit Prime Minister Modi detailed a vision for India to leapfrog other countries reliance on fossil fuels harnessing global science implemented locally. As such the timing of SUNRISE could not be better. SUNRISE is an ambitious programme to rapidly accelerate and prove low cost printed PV and tandem solar cells for use in off grid Indian communities within the lifetime of the project. SUNRISE will combine world leading UK research teams from Imperial (Durrant/Nelson), Cambridge (Friend), Oxford (Snaith) a key Indo UK research leader (Uppadaya at Brunel) with an internationally leading photovoltaic scaling activity (SPECIFIC IKC at Swansea University (Worsley/Watson)) and key Indian institutions notably IIT Delhi (Dutta/Pathak), NPL Delhi (Chand, Gupta), CSIR Hydrabad (Giribabu, Narayan), IISER Pune (Ogale), IIT Kanpur (Garg, Gupta). The research impact of scaleable and stable low cost metal mounted PV products will be supported by technology demonstration at five off grid village communities (each of up to 20000 people). The EPSRC JUICE consortium will support the systems integration and electrical storage elements to create real technology demonstrators using local manufacturing supply chains (Tata Cleantech Capital and Tata Trust). In addition to electrical infrastructure the SUNRISE partnership includes activity on gasification of farming/crop wastes (a major cause of the incredible pollution in Delhi in November 2016) and the SPECIFIC IKC will support the practical on site demonstration of photocatalytic water purification using a linked programme with the Gates' Foundation. A key driver for this project is not only demonstration of technology in real demonstration sites but the creation of a legacy of better Indian Industry/Institution collaboration through the creation of an Industrial Doctorate programme modelled on the success of the UK EngD programme started by EPSRC in 1992 and pioneered at Swansea.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S02252X/1
    Funder Contribution: 4,854,990 GBP

    Coatings are ubiquitous throughout day to day life and ensure the function, durability and aesthetics of millions of products and processes. The use of coatings is essential across multiple sectors including construction, automotive, aerospace, packaging and energy and as such the industry has a considerable value of £2.7 billion annually with over 300,000 people employed throughout manufacturers and supply chains. The cars that we drive are reliant on advanced coating technology for their durability and aesthetics. Planes can only survive the harsh conditions of flight through coatings. These coatings are multi-material systems with carefully controlled chemistries and the development and application of coatings at scale is challenging. Most coatings surfaces are currently passive and thus an opportunity exists to transform these products through the development of functional industrial coatings. For example, the next generation of buildings will use coating technology to embed energy generation, storage and release within the fabric of building. Photocatalytic coated surfaces can be used to clean effluent streams and anti-microbial coatings could revolutionise healthcare infrastructure. This means that this new generation of coatings will offer greater value-added benefits and product differentiation opportunities for manufacturers. The major challenges in translating these technologies into industry and hence products are the complex science involved in the development, application and durability of these new coatings systems. Hence, through this CDT we aim to train 50 EngD research engineers (REs) with the fundamental scientific expertise and research acumen to bridge this knowledge gap. Our REs will gather expertise on coatings manufacture regarding: - The substrate to be coated and the inherent challenges of adhesion - the fundamental chemical and physical understanding of a multitude of advanced functional coatings technologies ranging from photovoltaic materials to smart anti corrosion coatings - the chemical and physical challenges of the application and curing processes of coatings - the assessment of coating durability and lifetime with regards to environmental exposure e.g. corrosion and photo-degradation resistance - the implantation of a responsible and sustainable engineering philosophy throughout the manufacturing route to address materials scarcity issues and the fate of the materials at the end of their useful life. To address these challenges the CDT has been co-created with industry partners to ensure that the training and research is aligned to the needs of both manufacturers and the academic community thus providing a pathway for research translation but also a talent pipeline of people who are able to lead industry in the next generation of products and processes. These advanced coating technologies require a new scientific understanding with regards to their development, application and durability and hence the academic impact is also great enabling our REs to also lead within academia.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S016627/1
    Funder Contribution: 35,947,400 GBP

    The ABC will be one of two hubs funded through the Transforming Construction Industrial Challenge. ABC aims to: 'revolutionise the way the UK designs, constructs and operates buildings by realising the potential for the integration of advanced offsite manufacturing with state of the art digital design. This will include the incorporation and integration of energy generation, storage, and release technologies to create Active Buildings which substantially reduce both the operational costs of buildings and their demand on the UK energy infrastructure'. Our Vision is to enable energy resilient communities that are powered by the sun, share energy with transport and other buildings, whilst realising value for the UK by overcoming barriers and developing new business models with global potential. The Mission - ABC is a national centre of excellence and will catalyse a revolution in smart buildings and energy sharing. ABC will bring together energy, construction, government and research to create a dynamic ecosystem that identifies barriers and creates solutions for scale up and deployment of buildings and communities that are Active. ABC will prove scale, enable an industry and create the conditions for market adoption. Critical to this will be clustered demonstration facilities on a variety of building typologies and pipeline of several thousand buildings which are being considered by a diverse array of assembled supporting companies and organisations. We have already demonstrated that we can use buildings that are manufactured using the principles of car making to rapidly construct facilities that have facades that generate heat and electricity from the sun and include elements and new materials that store this energy (both electricity and heat) until we need it. Critically this enables buildings to be powered (electrically) and heated without any gas connection. In addition, our initial demonstrations have shown that the buildings can generate allot more energy than they use. Our 'Active Classroom' has generated over 1.6 times the energy used in its first full year and putting that in perspective the spare power would have driven one of our EVs for over 26,500 miles. Our aim then is to transform the way we think of buildings as consumers of power and requiring more infrastructure the more we build to a solution both to the requirements of occupancy and energy decarbonisation. One million homes would in essence require one large nuclear powerplant, however adoption of the new Active concept essentially delivers the homes and the powerplant at the same time. This is vitally important as we transition to electric cars which will be a major element of where excess power from buildings can be fed and with advanced new communication systems the fact that a car is stationary and by a building for almost 95% of its life we have potential for a huge mobile storage reserve. Construction also creates positive economic conditions. To frame the opportunity in relation to Active Homes, in a recent report by the UK Housebuilders Federation, the economic case for increasing home building is compelling. Each additional 10,000 units would support 43,000 jobs, increase economic output by £1.36bn, lead to £120m in tax recovery, £43.2m in local infrastructure and an increase in local economic spending by £320m. 10,000 Active homes would also add renewable energy capacity of ca 50MW including storage via EVs, thermal stores and internal batteries. Clearly this is only part of the story since there will also be tremendous value from non-residential buildings that will be showcased for education, factory and commercial properties as part of the delivery programme for ABC and these in many cases can form energy hubs for existing communities of more traditional buildings.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S001336/1
    Funder Contribution: 547,407 GBP

    Humankind is on the brink of significant climate change and material resource shortages. We have reached the limits of our traditional 'take-make-dispose' linear economic models in which materials are extracted from the earth to create products which are discarded at the end of their useful lives. To achieve sustainability with our planet we must rethink the way we consume and use resources and seek to decouple economic growth from primary resource consumption and the associated environmental emissions. Circular economy and the widespread deployment of green energy technologies are essential to achieve this. Even renewable energy technologies have an environmental impact associated with production and disposal at end-of-life, and we must seek to minimise these impacts and maximise product take back for reuse, refurbishment, remanufacturing and recycling once these technologies have ceased to be of use. To achieve this requires lifecycle optimisation, which takes account of product design and development of end-of-life processes. Printable photovoltaics (PPV) are a promising green energy technology in their infancy, which makes this the perfect time to carry out this research. Now is the time to develop processes and product designs which enable effective end-of-life treatment for efficient recovery of materials and components with which to manufacture new products, to drive down cost and environmental impacts of these emerging technologies, increasing the productivity of finite resources available to us. This project develops the eco-design of PPV informed by advanced characterisation and engagement with industrial partners and stakeholders at all stages of PV product lifecycles. This combined novel multidisciplinary approach to technical development of emerging technologies, which engages key industry partners and stakeholders in the value chain; and the development of methods, tools and knowledge required for lifecycle optimisation, can hasten commercialisation of PPV technology and accelerate transition towards circular economy for the greater benefit of the economy, environment and society.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M015254/1
    Funder Contribution: 2,513,160 GBP

    Climate change affects everyone on the planet through changing weather patterns particularly leading to increased occurrence of extreme weather which can, for instance, result in very intense rainfall leading to flooding or prolonged absence of rain leading to drought. Climate change is driven by increased atmospheric concentrations of greenhouse gases (e.g. carbon dioxide) which trap heat which would otherwise be dissipated away from the planet's surface. The biggest source of increasing carbon dioxide into the atmosphere is the burning of fossil fuels to generate energy (e.g. to generate electricity in coal or gas-fired power stations and/or in the internal combustion engines or cars/lorries/buses etc.). Climate change is arguably the biggest and most urgent challenge currently facing humankind. The paradox is that global society is expanding rapidly and that society wants to use ever increasing amounts of energy whilst, at the same time, we must urgently and significantly reduce the amount of energy-related greenhouse gases we are releasing. At the same time, energy costs are on an upward trend which is predicted to continue for the foreseeable future. The answer is renewable energy whereby energy is sustainably generated with no greenhouse gas emissions. However, current and predicted energy demand is huge and so the required scale of global renewable energy generation must match this. The most likely scenario is that future energy generation will rely on a patchwork of renewable energy sources (e.g. wind, hydroelectric, biomass, solar) with one energy source picking up the slack when another is generating poorly. However, this must still be produced at a cost that the customer can afford. When considering solar energy, there is huge surplus falling on the Earth's surface every day (approximately 6,000 times more than annual global energy consumption). This suggests that for 10% efficient solar cells, covering 0.2% of the crust with solar panels would meet energy demand. Hence, the primary challenge is to be able to manufacture solar cells at sufficient scale to meet this energy demand. Currently, about 90% of solar cell modules sold are crystalline silicon (cSi) which are sandwiched between two sheets of glass and then either bolted to frames on roof surfaces or floor mounted in solar farms. The problems with cSi modules are that they are manufactured using batch processes, which involves a lot of staff which makes it harder for the UK to compete because our labour costs tend to be higher. For new solar cell technologies to compete with cSi, they must be available at the right cost to the customer. They must also contain low embodied energy (that is the energy which is takes to manufacture them). Combining these two factors will reduce the initial cost the customer which will increase uptake. It will also significantly reduce pay-back times; i.e. the time the solar cells must be installed before the customer has saved enough money on their energy bills to have paid off the initial purchase costs. Perovskite solar cells (the subject of this research) were discovered by Professor Snaith at Oxford University in 2012. These devices offer great potential for very large scale solar cell uptake because they convert solar energy to electricity very efficiently and all the device components are abundant. The device components are also printable onto flexible substrates, which means that this technology should be suitable for roll-to-roll processing which is not labour intensive and which can be very rapid. Printing devices onto flexible substrates means that it should also be possible to integrate these devices into commercial products; for instance for mobile device charging such as mobile phones or onto the outside of buildings to generate energy at the point of use.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.