Powered by OpenAIRE graph

Morgan Advanced Materials and Technology

Morgan Advanced Materials and Technology

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/I005099/2
    Funder Contribution: 59,336 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E035868/1
    Funder Contribution: 743,777 GBP

    Enormous numbers of energetic neutrons are released when helium is produced by the fusion of deuterium and tritium at high temperatures, as in our Sun. This promises to solve the World's long-term energy needs if a controlled version can be carried out on Earth. JET at Culham has been one of the leading experimental reactors for magnetically confined fusion using gaseous plasmas, and has been an important step towards designing the international thermonuclear experimental reactor, ITER. UK fusion technology is now on the fast track and will demand a new generation of materials for commercial reactor construction. The selection of materials for ITER has been based on those available some years ago, but there are trade-offs in deciding whether to use high temperature metals that are resistant to plasma erosion but liable to be damaged by radiation and also contaminate the pure plasma, or to use light elements that are toxic (beryllium) or more easily eroded and may absorb significant amounts of tritium fuel (graphite). We want to establish a materials capability for the next generation, and in particular to exploit our capability in diamond films as a route to designer carbons as plasma-facing wall materials. This proposal intends to coat carbon tiles with diamond on a large scale, in order to lower the erosion rates, dust formation, and tritium absorption, by using the unique properties of diamond, namely high temperature stability, radiation resistance, high atomic density and unsurpassed chemical stability in the presence of hydrogen plasmas. This solution enables the preferred use of low atomic number plasma-facing materials. Computational modelling of carbon structures will complement the experimental programme in optimising the chemical and physical structure of a composite functional material exposed to radiation. If successful, this approach would enable reactors to operate for longer periods before component replacements and without compromising the tritium inventory.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H019480/1
    Funder Contribution: 3,374,040 GBP

    The Supergen Biological Fuel Cells Consortium is developing advanced technologies that exploit the special properties of biological systems for energy production. A fuel cell produces electricity by reacting a fuel (such as hydrogen or methanol) with oxygen (from air) at a pair of electrodes instead of by combustion,which produces only heat. Normally, fuel cells require expensive components such as special catalysts (platinum) and membranes. In contrast, biological fuel cells use whole organisms or isolated enzymes as catalysts, and a membrane may not be necessary. Two kinds of fuel cell are under development - microbial fuel cells (MFCs) and enzyme-based fuel cells. MFCs have an important role to play in improving our environment and conserving energy whereas enzyme-based fuel cells (EFCs) provide unique opportunities for new kinds of fuel cells, including ones that can be made very small for niche applications such as implantable power sources. MFCs use bacteria, held in contact with an electrode, to convert organic matter (the fuel) into electrical power. They can also be used to remove (oxidising) contaminants from water supplies with the advantage that the electrical power that is simultaneously produced offsets the energy costs for remediation. EFCs exploit the high activities, efficiencies and selectivities of enzymes, recognising that in most cases, and particularly when attached to an electrode, their performance is far superior to man-made catalysts. The Consortium combines expertise in several areas and plans to advance the field on several fronts. These include the following: developing a clear understanding of how microbes colonise electrodes, how useful bacteria can be sustained and undesirable microbes deterred from colonising; understanding and improving the way that electrical charge is transferred between bacteria and electrodes; optimising the design of electrodes from cheap and abundant materials, focusing on such factors as surface chemistry porosity and conductivity; designing novel fuel cells for small-scale special applications; last but not least, finding new ways to replace platinum as the electrocatalyst for oxygen reduction.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I005099/1
    Funder Contribution: 104,335 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E035671/1
    Funder Contribution: 117,780 GBP

    Enormous numbers of energetic neutrons are released when helium is produced by the fusion of deuterium and tritium at high temperatures, as in our Sun. This promises to solve the World's long-term energy needs if a controlled version can be carried out on Earth. JET at Culham has been one of the leading experimental reactors for magnetically confined fusion using gaseous plasmas, and has been an important step towards designing the international thermonuclear experimental reactor, ITER. UK fusion technology is now on the fast track and will demand a new generation of materials for commercial reactor construction. The selection of materials for ITER has been based on those available some years ago, but there are trade-offs in deciding whether to use high temperature metals that are resistant to plasma erosion but liable to be damaged by radiation and also contaminate the pure plasma, or to use light elements that are toxic (beryllium) or more easily eroded and may absorb significant amounts of tritium fuel (graphite). We want to establish a materials capability for the next generation, and in particular to exploit our capability in diamond films as a route to designer carbons as plasma-facing wall materials. This proposal intends to coat carbon tiles with diamond on a large scale, in order to lower the erosion rates, dust formation, and tritium absorption, by using the unique properties of diamond, namely high temperature stability, radiation resistance, high atomic density and unsurpassed chemical stability in the presence of hydrogen plasmas. This solution enables the preferred use of low atomic number plasma-facing materials. Computational modelling of carbon structures will complement the experimental programme in optimising the chemical and physical structure of a composite functional material exposed to radiation. If successful, this approach would enable reactors to operate for longer periods before component replacements and without compromising the tritium inventory.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.