Powered by OpenAIRE graph

Solarflare Communications

Solarflare Communications

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/L026015/1
    Funder Contribution: 758,299 GBP

    Resilience is a vital property of communications systems and unified ICT environments, and is achieved mainly by infrastructural redundancy, and static security and network control (e.g., through multipath routing protocols, signature-based intrusion detection systems). This results in mostly monolithic solutions that are service and location-specific, and they protect the infrastructure against a static and well-defined set of threats. However, current approaches do not incorporate, nor do they take advantage of, the wealth of spatio-temporal information available in today's ICT environments, such as sensing, logs, packet data, or external global media feeds. Such diverse data and information sources from heterogeneous environments unified over ICT infrastructures can be exploited to create situation awareness, and can help protect the infrastructure from a range of dynamic and emerging adversarial events (e.g., from new types of failures due to complexity and centralisation, to denial of service attacks and natural disasters) that current static approaches fail to provide [1][2][3]. At the same time, today's ICT environments are evolving as crucial, mission-critical socio-economic systems, and their optimal performance depends on adaptive and intelligent schemes to ensure resilient operation at the onset of legitimate or malicious adversarial events. In order to realise this aim, there needs to be a suitable instrumentation, measurement, analysis, and control infrastructure that will operate natively with, and add intelligence to, the unified networked environment. In this project, we propose to design and develop a generic, resilient and adaptive situation-aware information infrastructure that would predict and confront the broad range of challenges faced by the network. We aim to provide novel and practical mechanisms that will enable a deeper understanding of the dynamic and non-stationary evolution of mission-critical systems through harnessing 'big data' sets of relevant internal (monitored) and external (global media feeds) spatio-temporal information - what we call 'context'. Our mechanisms will be incorporated as a protocol suite within a Software-Defined architecture, integrated as a native component in (future) computer networks design. This project is not simply aiming at integrating off-the-shelf solutions into a unified scheme, but rather to revisit the resilience challenge in mission-critical ICT environments and contribute new solutions to the information processing, algorithmic, networking and systems aspects of such undertakings. The research will be carried out over two years jointly at the Universities of Lancaster and Glasgow, involving investigators with a wide range of expertise (from resilient and autonomic communications, through network instrumentation and management, to information retrieval) and in collaboration with a number of leading industrial partners in the areas of safety-critical systems (NATS), industrial control networks (EADS-IW), and hardware-accelerated custom computation products (Solarflare). This consortium will ensure delivery of excellent research results with direct industrial applicability and transformative effects on future intelligent mission-critical infrastructures. [1]. Windows Azure service interruption: http://blogs.msdn.com/b/windowsazure/archive/2012/08/02/root-cause-analysis-for-recent-windows-azure-service-interruption-in-western-europe.aspx [2]. Air Traffic Management system malfunction at Dublin Airport: http://www.computerworld.com/s/article/9110319/Dublin_Airport_radar_system_brought_down_by_faulty_network_card [3]. Power outage hits London Data Centre: http://www.theregister.co.uk/2012/07/10/data_centre_power_cut/

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H040536/1
    Funder Contribution: 5,997,920 GBP

    Energy efficient processes are increasingly key priorities for ICT companies with attention being paid to both ecological and economic drivers. Although in some cases the use of ICT can be beneficial to the environment (for example by reducing journeys and introducing more efficient business processes), countries are becoming increasingly aware of the very large growth in energy consumption of telecommunications companies. For instance in 2007 BT consumed 0.7% of the UK's total electricity usage. In particular, the predicted future growth in the number of connected devices, and the internet bandwidth of an order of magnitude or two is not practical if it leads to a corresponding growth in energy consumption. Regulations may therefore come soon, particularly if Governments mandate moves towards carbon neutrality. Therefore the applicants believe that this proposal is of great importance in seeking to establish the current limits on ICT performance due to known environmental concerns and then develop new ICT techniques to provide enhanced performance. In particular they believe that substantial advances can be achieved through the innovative use of renewable sources and the development of new architectures, protocols, and algorithms operating on hardware which will itself allows significant reductions in energy consumption. This will represent a significant departure from accepted practices where ICT services are provided to meet the growing demand, without any regard for the energy consequences of relative location of supply and demand. In this project therefore, we propose innovatively to consider optimised dynamic placement of ICT services, taking account of varying energy costs at producer and consumer. Energy consumption in networks today is typically highly confined in switching and routing centres. Therefore in the project we will consider block transmission of data between centres chosen for optimum renewable energy supply as power transmission losses will often make the shipping of power to cities (data centres/switching nodes in cities) unattractive. Variable renewable sources such as solar and wind pose fresh challenges in ICT installations and network design, and hence this project will also look at innovative methods of flexible power consumption of block data routers to address this effect. We tackle the challenge along three axes: (i) We seek to design a new generation of ICT infrastructure architectures by addressing the optimisation problem of placing compute and communication resources between the producer and consumer, with the (time-varying) constraint of minimising energy costs. Here the architectures will leverage the new hardware becoming available to allow low energy operation. (ii) We seek to design new protocols and algorithms to enable communications systems to adapt their speed and power consumption according to both the user demand and energy availability. (iii) We build on recent advances in hardware which allow the block routing of data at greatly reduced energy levels over electronic techniques and determine hardware configurations (using on chip monitoring for the first time) to support these dynamic energy and communications needs. Here new network components will be developed, leveraging for example recent significant advances made on developing lower power routing hardware with routing power levels of approximately 1 mW/Gb/s for ns block switching times. In order to ensure success, different companies will engage their expertise: BT, Ericsson, Telecom New Zealand, Cisco and BBC will play a key role in supporting the development of the network architectures, provide experimental support and traffic traces, and aid standards development. Solarflare, Broadcom, Cisco and the BBC will support our protocol and intelligent traffic solutions. Avago, Broadcom and Oclaro will play a key role in the hardware development.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.