Natural England
Natural England
2 Projects, page 1 of 1
assignment_turned_in Project2008 - 2008Partners:KTL (Finnish National Public Health), English Nature Humber to Penines, RSWT, Stuttgart University of Applied Science, De Montfort University +29 partnersKTL (Finnish National Public Health),English Nature Humber to Penines,RSWT,Stuttgart University of Applied Science,De Montfort University,DEFRA,Swedish Meteorological & Hydro Institute,Finnish Institute for Health and Welfare,National Energy Foundation,The Lean Economy Connection,Groundwork Leicester and Leicestershire,Natural England,London Borough of Merton,LEICESTER CITY COUNCIL,POLITO,NEF,Leicester City Council,Dept for Env Food & Rural Affairs DEFRA,Leicester City Council,KTL (Finnish National Public Health),Wildlife Trusts,JMP Consultanting,RSA (Royal Society for Arts),Department for Environment Food and Rural Affairs,JMP Consultanting,The Lean Economy Connection,DMU,Stuttgart University of Applied Sciences,Groundwork Leicester and Leicestershire,Swedish Meteorological & Hydrology Insti,Merton Council (London Borough),The Royal Society of Arts (RSA),Natural England,DEFRAFunder: UK Research and Innovation Project Code: EP/F007604/1Funder Contribution: 2,726,670 GBPGlobal warming is a serious threat to mankind and is exacerbated by the release of greenhouse gases, in particular carbon dioxide. In the UK, as in other developed counties, buildings, and the activities in them, and transport generate significant carbon emissions: in the UK buildings 47% and transport 23%, and rising significantly. The UK has legally binding targets to reduce greenhouse gas emissions and has an intention to cut national CO2 emissions by 60% by 2050. The sequestration of carbon by living plants can 'lock' carbon in soils and ameliorate carbon dioxide emissions. In the UK about 80% of the population live in cities and other urban areas and these are continually expanding. One way to represent carbon emissions from different sources and to compare them is to calculate the carbon footprint. This can be done for an individual, a household, a city (or a country). There are however some difficult problems to be overcome in order to do this.The 4M project will then calculate the carbon footprint of the entire city of Leicester by:* Measuring the carbon released by traffic, and by the burning of fossil fuels in homes and places of work and the rate at which green plants and trees capture carbon and lock it in the soil;* Modelling the effects on carbon budget of road layouts, traffic volumes and traffic speeds, the way we use energy in our homes and places of work; and the way we look after green spaces;* Mapping the sources and sinks of carbon for the whole city and comparing this with the social and economic well-being of its 270,000 inhabitants; and* Management studies which will investigate how to shrink the city's carbon footpring through: changing the road network and/or the provision of better public transport; alterations to the maintenance of green spaces and the treatment of waste; the use of renewable and low energy systems to provide power and light; and the operation of individual Carbon Trading (ICT) schemes.ICT schemes give a limited carbon emissions allocation to individuals. People must emit less carbon dioxide than their limit or buy more credits. The tradeoffs that people might make, eg travelling less or buying renewable energy, will be studied. This will be one of the first studies to explore the likely impact of such schemes on the life-styles and well-being of city dwellers. The project consortium consists of the Institute of Energy and Sustainable Development (IESD) at De Montfort University the Institute for Transport Studies (ITS) at the University of Leeds and the Biodiversity and Micro-ecology Group (BIOME) at Sheffield University. It is supported by both central and local government representatives and contributors form various organisations concerned with the future, more sustainable development, of cities in the UK and overseas.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3e4955ec23da8142ff53a5687f630801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3e4955ec23da8142ff53a5687f630801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2015Partners:NexusAB (United Kingdom), DEFRA, Durham County Council, Gateshead Council, Jacobs Engineering Group Inc +30 partnersNexusAB (United Kingdom),DEFRA,Durham County Council,Gateshead Council,Jacobs Engineering Group Inc,Newcastle City Council,Nexus Ltd,tnei,Newcastle City Council,AECOM,Aecom (United Kingdom),Northumberland County Council,Nexus Ltd,Jacobs Engineering UK Ltd.,NERIP,Durham County Council,Department for Transport,Deutsche Bank (United Kingdom),NWL,Graphite Resources Limited,GRAPHITE RESOURCES LIMITED,TNEI Group,Newcastle University,Tees Valley,NERIP,Northumberland County Council,Natural England,Gateshead Metropolitan Borough Council,NEWCASTLE CITY COUNCIL,DfT,Northumbrian Water Group plc,AECOM (International),Newcastle University,Natural England,Tees ValleyFunder: UK Research and Innovation Project Code: EP/I002154/1Funder Contribution: 2,244,040 GBPThe U.K. population is projected to reach 80 million by 2050 and it is anticipated that the overwhelming majority will continue to live in cities. Besides becoming more densely populated, future cities will be surrounded with expanding urban areas. Interactions within cities; across urban areas and with surrounding cities, towns and 'rural' areas with the rest of the UK will place new and different demands on infrastructure, whether housing, energy, transport, freight distribution and disposal of waste. Decisions that are made now will have profound implications for the resultant pressures on transport, living space, energy use, and ecosystem services (the benefits humans receive from ecosystems). These decisions will play out at two fundamentally different spatial scales. First, and by far the better understood, are those decisions that concern individual households and their neighbourhoods. These include issues of how their members move around, what kinds of housing they occupy, how their energy demands and waste production are reduced, and how their negative influences on the wider environment generally will be limited. Second, broad scale strategic decisions regarding regional planning will determine where in the U.K. population growth is primarily accommodated. This will determine, and be shaped by, the kinds of transport and energy infrastructure required, and the environmental impacts. Obviously these two sets of decisions are not independent. The demands for and impacts of broad scale development (whether this be the creation of new urban areas or the intensification of existing ones) - and thus how this is best achieved to deliver sustainability- will be influenced not by the typical demands and impacts exhibited now by households, but by the way in which these have been changed in response to the modification to the associated infrastructure. This makes for a challenging problem in predicting and evaluating the possible consequences of different potential scenarios of regional development. The proposed study SElf Conserving URban Environments (SECURE) will address this grand challenge of integration across scales (the global aim) by developing a range of future regional urbanization scenarios, and exploring their consequences for selected high profile issues of resource demand and provision (transport, dwellings, energy, and ecosystem services) alongside sustainable waste utilisations. In doing so, it will build on findings of research outputs of several previous SUE projects and harness its relationship in the context of policy and economic growth. The study includes specific research objectives under five broad cross-cutting themes - Urbanisation, Ecosystems Services, Building and Energy, Stakeholder Engagement and Policy Integration across themes. SECURE is designed to assemble novel deliverables to bring about step change in current knowledge and practice. The North East Region will be used as a test bed and evaluation of transitional scenarios leading up to 2050 will quantify the benefits of integration across the scales through conservation across the themes. SECURE will deliver policy formulation and planning decisions for 2030 and 2050 with a focus on creating Sustainable Urban Environment.The contributors to this project are researchers of international standings who have collaborated extensively on several EPSRC funded projects, including the SUE research since its inception. The SECURE team builds on their current collaboration on the SUE2 4M project. The Project consortium is led by Newcastle - Prof Margaret Bell as PI and Dr Anil Namdeo as co-ordinator alongside Dr Jenny Brake with academic partners: Prof David Graham (Environmental Engineering), Prof David Manning (Geosciences); from Loughborough: Prof Kevin Lomas, Prof Jonathan Wright and Dr Steven Firth (Civil and Building Engineering); from Sheffield: Prof Kevin Gaston and Dr Jonathan Leake (Animal and Plant Sciences).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1813485db81642fc0be4c5cbf0214672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1813485db81642fc0be4c5cbf0214672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu