Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde
Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde
22 Projects, page 1 of 5
assignment_turned_in ProjectFrom 2024Partners:Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Universiteit Utrecht, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Bijvoet Center for Biomolecular Research, Biomolecular Mass Spectrometry and ProteomicsUniversiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde,Universiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Bijvoet Center for Biomolecular Research, Biomolecular Mass Spectrometry and ProteomicsFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.M.22.233Tumors attacked by activated T-cells face a barrage of cytotoxic cytokines. Sensitivity or resistance to these death-inducing molecules relies entirely on the protein networks acting inside tumor cells. Cell fate hangs at a balance that is controlled by protein-protein interactions and post-translational modifications (PTMs) such as phosphorylation. If we can decode the spatial and temporal PTM regulation of key cell death activators, like RIPK1, we can harness the power to control tumor cell fate like a light switch. Using quantitative MS methods, I will map the who, what, and where of PTM regulation that controls tumor fate upon T-cell attack.
more_vert assignment_turned_in ProjectFrom 2023Partners:Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Universiteit Utrecht, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Inorganic Chemistry and CatalysisUniversiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde,Universiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Inorganic Chemistry and CatalysisFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.M.22.221Catalysts are used to speed up most industrial reactions. However, there are limits to how fast a catalyst can work under static conditions. This is halting the development of more sustainable processes, such as carbon dioxide (CO2) conversion to methanol. In this project, we will use intermittent light to make CO2 catalysts “dance”, to make them work 10 times faster than possible under static conditions. We will use new methods to watch the catalysts dance, and to know how to change the light stimulation in order to boost their activity. This will open new ways to turn waste to chemicals.
more_vert assignment_turned_in Project2016 - 2021Partners:Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Universiteit Utrecht, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Inorganic Chemistry and CatalysisUniversiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde,Universiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Inorganic Chemistry and CatalysisFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 723.015.007Many materials used today are made using functional porous materials such as solid catalysts. To understand how a solid catalysts complex pore structure - with pores that are 100-10000 times smaller than a human hair - affects their performance we developed methods to image such tiny pore networks in 3D using X-ray microscopy and single molecule fluorescence microscopy. We can now map such a pore network in 3D at unprecedented spatial resolution and follow an individual light-emitting molecule traveling through. Information obtained from this can trigger new and/or improved applications/design of catalysts, for example using them in plastic waste recycling.
more_vert assignment_turned_in Project2023 - 2024Partners:Universiteit Utrecht, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement ScheikundeUniversiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement ScheikundeFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS21.4.035Plastics are ubiquitous. Their abundant accumulation in the environment have led to one of the most serious threats to our ecosystem. The root of the problem is that most of today’s plastics are non-recyclable and persist in natural environments. With the continuously increasing rate of plastics production, there is an urgent need to develop plastics with the end-of-life management programmed into the molecular structure. This project aims to develop a novel methodology – the electricity-mediated oxidation of plastics – to introduce weak links into persistent plastics to convert them into a new generation of circular plastics.
more_vert assignment_turned_in ProjectFrom 2025Partners:Universiteit Utrecht, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement ScheikundeUniversiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement ScheikundeFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS24.2.172Nowadays our society is transitioning from gas- to electricity based ways of heating. Induction heating is an efficient and sustainable alternative to fossil fuel based heating for chemical industry. Similar to the daily-life applications in cooking, induction heating in catalysis allows for targeted heating and rapid temperature control. In this project I will use induction heating to convert CO2 to fuels. Using a novel catalyst design consisting of a magnetic support and catalytically active metal nanoparticles I will drastically increase the energy-efficiency and sustainability of the process through targeted heating using renewable energy sources.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
