Short and Associates
Short and Associates
2 Projects, page 1 of 1
assignment_turned_in Project2008 - 2011Partners:Chongqing University, Max Fordham (United Kingdom), UNIVERSITY OF READING, Short and Associates, Jaros Baum & Bolles UK Ltd +9 partnersChongqing University,Max Fordham (United Kingdom),UNIVERSITY OF READING,Short and Associates,Jaros Baum & Bolles UK Ltd,Jaros Baum & Bolles UK Ltd,Chartered Institution of Building Services Engineers,Short and Associates,CIBSE,[no title available],University of Reading,Max Fordham LLP,MAX FORDHAM LLP,Chongqing UniversityFunder: UK Research and Innovation Project Code: EP/F039867/1Funder Contribution: 281,906 GBPThe microclimate parameters in urban areas have important impacts on the energy performance of buildings and the potential of passive cooling measures. For example, the urban heat-island (UHI) effect results in increased local atmospheric and surface temperatures in urban areas compared to the surrounding rural areas. Thus, the UHI will increase the overheating risk and the peak cooling load of buildings. It may particularly have a negative impact on night cooling strategies within the UHI during periods of hot weather. Effective urban planning and building design can have a beneficial effect on the urban climate and contribute towards reducing the intensity of the urban heat island, which improves the conditions in living spaces as well as directly reducing the peak cooling load of a building. The vision of the proposed project is to develop a practical, robust, urban thermal simulation method by using Digital Element Model (DEM) to store urban building geometry and boundary information and integrating it with the coupled thermal and airflow model. The DEM is a compact way of storing 3D information using a 2D matrix of elevation values; each pixel represents building heights and can be displayed in a grey-shaded digital image, which has a grey-level proportional to the level of the urban surface. The DEM is capable to handle large amount of data in less time. It is also able to present the geometrical relations among the buildings in the studied area. It has been proven to be an effective way of urban analysis. This model will be used to perform parametric study for various configurations of urban form and texture, building and road surface materials and vegetation in order to analyse Urban Heat-Island (UHI) mitigation strategies and potential passive measures of energy-efficient buildings. The principal objectives of this proposed three-year project are: (1) To develop a dynamically coupled thermal and airflow urban model integrating with the Digital Element Model (DEM), and to validate the model in association with experimental investigations in the urban canyon; (2) To link the proposed numerical urban model with the existing thermal and airflow building model (developed by the PI) to conduct an analysis of the interrelationship of the urban microclimate and building energy performance; (3)To perform an urban parametric study and analyse the potential of UHI mitigation strategies and their impact on the urban environment and energy consumption (CO2 emission) and (4)To assess urban and building thermal comfort. The prospected deliverables are: D1: A coupled thermal and airflow urban dynamic model integrated with the Digital Element Model (DEM) together with a series of numerical and visualised simulation results of different urban configurations for urban environment analysis; D2: A integrated urban microclimatic and building energy simulation model; D3: A series of parametric assessments for the urban environment and the potential of UHI mitigation strategies and D4: A series of assessments for passive measures of energy-efficient building design in the urban context.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::18820466cd8820aa953c770291a0d545&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::18820466cd8820aa953c770291a0d545&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2014Partners:Caterpillar Inc, Celsa Steel UK, University of Cambridge, Tata Steel (United Kingdom), University of Oxford +48 partnersCaterpillar Inc,Celsa Steel UK,University of Cambridge,Tata Steel (United Kingdom),University of Oxford,University of Cambridge,Arup Group Ltd,Innoval Technology (United Kingdom),JAGUAR LAND ROVER,Cambridge Programme for Industry,Ramboll (United Kingdom),INNOVAL,The Welding Institute,Crown Packaging (United Kingdom),Network Rail,Celsa Steel UK,International Aluminium Institute,Tata Motors (United Kingdom),TU Dortmund University,Alcoa (United Kingdom),IAI,NAMTEC,NTNU Norwegian Uni of Science & Tech,Boeing (United Kingdom),Arup Group (United Kingdom),SIEMENS PLC,Alcoa Europe Flat Rolled Products,Norwegian University of Science and Technology,Jaguar Land Rover (United Kingdom),Short and Associates,Novelis (Canada),Massachusetts Institute of Technology,Corus UK,FORD MOTOR COMPANY LIMITED,Tata Steel (United Kingdom),University of Sheffield,The Welding Institute,Massachusetts Institute of Technology,RAM,NTNU Nor Uni of Sci & Tech (Remove),Arup Group,Boeing United Kingdom Limited,UNIVERSITY OF CAMBRIDGE,Crown Packaging Plc,Massachusetts Institute of Technology,Caterpillar Limited (UK),Danieli (United Kingdom),Short and Associates,Network Rail Ltd,Danieli Davy Distington Ltd,Ford Motor Company (United Kingdom),Novelis Global Technology Centre (NGTC),Siemens VAIFunder: UK Research and Innovation Project Code: EP/G007217/1Funder Contribution: 1,565,450 GBPAchieving the carbon target for steel and aluminium requires an industry-wide transformation which will result in new business models and new metal flows. The proposal aims to identify credible scenarios for achieving the target, to specify the barriers to achieving them, and to define the economic and policy measures required to drive change. In parallel, the proposal aims to deliver basic technology research that will allow more options for a future materially efficient steel and aluminium economy.It is widely agreed that a cut of at least 60% in global greenhouse gas emissions will be required by 2050 to limit the adverse effects of climate change. Steel and aluminium are responsible for 8% of global energy related emissions. Industry efforts to date have focused on reducing energy in primary production, and recycling metal by melting and re-casting. However, demand for both steel and aluminium is forecast to double, recycling rates are already around 60-70% and the most optimistic projections for energy efficiency improvements deliver only 30% reduction per unit output of material. Efficiency improvements alone are not sufficient, but the 2050 target can be achieved if, in addition to existing measures, energy used in converting ingots to products is halved, the volume of metal used in each application is reduced, and a substantial fraction of metal is re-used without melting. In pursuing this strategy, this proposal is aligned with the EPSRC strategic theme on energy demand reduction.The need for clarity about the physical implications of responding to the carbon target has become a major priority in the metal producing and using industry. Without the work described in this proposal, it is not possible for the government, industry and the public to understand and negotiate the choices they must collectively make in order to meet the carbon target in this sector. Accordingly, this proposal comes with support of 2 million in committed effort from 20 global companies, all with operations in the UK. The business activities of the consortium span primary metal production, conventional recycling, equipment manufacture, road transport, construction, aerospace, packaging and knowledge transfer.The work of the fellowship will be split between business analysis and technology innovation themes. The business analysis theme will identify future scenarios, barriers and a roadmap for meeting the target. This work will include specific analysis of future metal flows, application of a global economic model and the analysis of policy measures. The technology innovation theme aims to optimize the requirements for metal use through novel manufacturing process design, to increase material and energy efficiency in forming and finishing, and to develop solid-state closed-loop recycling for metals. Both themes will be developed in collaboration with the consortium, and will also draw on an international scientific panel and a cross-disciplinary advisory panel in Cambridge.The work will lead to two major reports for wide distribution, direct dissemination into the partner companies, training courses, technology assessments and physical demonstrations of the technology innovations. These will include a demonstration for public engagement. The results of the work on steel and aluminium will be used to stimulate interest among business leaders in other sectors, and will form the basis for a longer term Centre for Low Carbon Materials Processing in Cambridge.The Leadership Fellowship offers a unique and timely opportunity to undertake the basic research required to drive a step-change in material efficiency, by demonstrating that a different flow of metal through the global economy is technically and economically possible, and by inspiring and informing those who can influence change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c9146d685268e7b62921bdea61a5c8e&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8c9146d685268e7b62921bdea61a5c8e&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
