Powered by OpenAIRE graph

TWI Ltd

58 Projects, page 1 of 12
  • Funder: UK Research and Innovation Project Code: EP/G037388/1
    Funder Contribution: 6,168,140 GBP

    This Industrial Doctoral Centre (IDC) addresses a national need by building on the strengths of the existing EngD in Micro- and NanoMaterials and Technologies (MiNMaT) and the University of Surrey's excellent track record of working with industry to provide a challenging, innovative and transformative research environment in materials science and engineering. Following the proven existing pattern, each research engineer (RE) will undertake their research with their sponsor at their sponsor's premises. The commitment of potential sponsors is demonstrated in the significant number of accompanying letters of support. Taking place over all four years, carefully integrated intensive short courses (normally one week duration) form the taught component of the EngD. These courses build on each other and augment the research. By using a core set of courses, graduates from a number of physical science/engineering disciplines can acquire the necessary background in materials. This is essential as there are insufficient numbers of students who have studied materials at undergraduate level. The research focus of this IDC will be the solution of academically challenging and industrially relevant processing-microstructure-property relationship problems, which are the corner-stones of the discipline. This will be possible because REs will interact with internationally leading academics and have access to a suite of state-of-the-art characterisation instrumentation, enabling them to obtain extensive hands on experience. As materials features as one of the University's seven research priority areas, there is strong institutional support as demonstrated in the Vice Chancellor's supporting letter, which pledges 2.07M of new money for this IDC. As quality and excellence run through all aspects of this IDC, those graduating with an EngD in MiNMaT will be the leaders and innovators of tomorrow with the confidence, knowledge and research expertise to tackle the most challenging problems to keep UK industry ahead of its competitors.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I033335/2
    Funder Contribution: 5,618,010 GBP

    The EPSRC Centre for Innovative Manufacturing in Additive Manufacturing will create a sustainable and multidisciplinary body of expertise that will act as a UK and international focus - the 'go to' place for additive manufacturing and its applications. The Centre will undertake a user-defined and user-driven programme of innovative research that underpins Additive Manufacturing as a sustainable and value-adding manufacturing process across multiple industry sectors.Additive Manufacturing (AM) is the direct production of end-use component parts made using additive layer manufacturing technologies. It enables the manufacture of geometrically complex, low to medium volume production components in a range of materials, with little, if any, fixed tooling or manual intervention beyond the initial product design. AM enables a number of value chain configurations, such as personalised component part manufacture but also economic low volume production within high cost base economies. This innovative approach to manufacturing is now being embraced globally across industry sectors from high value aerospace / automotive manufacture to the creative and digital industries. To date AM research has almost exclusively focused upon the production of single material, homogeneous structures (in polymers, metals and ceramics). The EPSRC Centre for Innovative Manufacturing in Additive Manufacturing will move away from single material, 'passive' AM processes and applications that exhibit conventional levels of functionality, toward the challenges of investigating next generation, multi-material active additive manufacturing processes, materials and design systems. This transformative approach is required for the production of the new generation of high-value, multi-functional products demanded by industry. The Centre will initially explore two themes as the centrepieces of a wider research portfolio, supported by a range of platform activities. The first theme takes on the challenge of how to design, integrate and effectively implement multi-material, multi-functional manufacturing systems capable of matching the requirements of industrial end-users for 'ready-assembled' multifunctional devices and structures. Working at the macro level, this will involve the convergence of several approaches to increase embedded value to the product during the manufacturing stage by the direct printing / deposition of electronic / optical tracks potentially on a voxel by voxel basis; the processing and bonding of dissimilar materials that ordinarily require processing at varying temperatures and conditions will be particularly challenging. The second theme will explore the potential for 'scaling down' AM for small, complex components, extending single material AM to the printing of optical / electronic pathways within micro-level products and with a vision to directly print electronics integrally. The platform activities will provide the opportunity to undertake both fundamental and industry driven pilot studies that both feed into and derive from the theme-based research, and grow the capacity and capability of the Centre, creating a truly national UK Centre and Network that maintains the UK at the front of international research and industrial exploitation in Additive Manufacturing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015153/1
    Funder Contribution: 3,640,460 GBP

    The proposal seeks funds to renew and refresh the Centre for Doctoral Training in Formulation Engineering based in Chemical Engineering at Birmingham. The Centre was first funded by EPSRC in 2001, and was renewed in 2008. In 2011, on its 10th anniversary, the Centre received one of the Diamond Jubilee Queen's Anniversary Prizes, for 'new technologies and leadership in formulation engineering in support of UK manufacturing'. The scheme is an Engineeering Doctoral Centre; students are embedded in their sponsoring company and carry out industry-focused research. Formulation Engineering is the study of the manufacture of products that are structured at the micro-scale, and whose properties depend on this structure. In this it differs from conventional chemical engineering. Examples include foods, home and personal care products, catalysts, ceramics and agrichemicals. In all of these material formulation and microstructure control the physical and chemical properties that are essential to its function. The structure determines how molecules are delivered or perceived - for example, in foods delivery is of flavour molecules to the mouth and nose, and of nutritional benefit to the GI tract, whilst in home and personal care delivery is to skin or to clothes to be cleaned, and in catalysis it is delivery of molecules to and from the active site. Different industry sectors are thus underpinned by the same engineering science. We have built partnerships with a series of companies each of whom is world-class in its own field, such as P&G, Kraft/Mondelez, Unilever, Johnson Matthey, Imerys, Pepsico and Rolls Royce, each of which has written letters of support that confirm the value of the programme and that they will continue to support the EngD. Research Engineers work within their sponsoring companies and return to the University for training courses that develop the concepts of formulation engineering as well as teaching personal and management skills; a three day conference is held every year at which staff from the different companies interact and hear presentations on all of the projects. Outputs from the Centre have been published in high-impact journals and conferences, IP agreements are in place with each sponsoring company to ensure both commercial confidentiality and that key aspects of the work are published. Currently there are 50 ongoing projects, and of the Centre's graduates, all are employed and more than 85% have found employment in formulation companies. EPSRC funds are requested to support 8 projects/year for 5 years, together with the salary of the Deputy Director who works to link the University, the sponsors and the researchers and is critical to ensure that the projects run efficiently and the cohorts interact well. Two projects/year will be funded by the University (which will also support a lecturer, total >£1 million over the life of the programme) and through other sources such as the 1851 Exhibition fund, which is currently funding 3 projects. EPSRC funding will leverage at least £3 million of direct industry contributions and £8 million of in-kind support, as noted in the supporting letters. EPSRC funding of £4,155,480 will enable a programme with total costs of more than £17 million to operate, an EPSRC contribution of 24% to the whole programme.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K008749/1
    Funder Contribution: 4,280,020 GBP

    The conditions in which materials are required to operate are becoming ever more challenging. Operating temperatures and pressures are increasing in all areas of manufacture, energy generation, transport and environmental clean-up. Often the high temperatures are combined with severe chemical environments and exposure to high energy and, in the nuclear industry, to ionising radiation. The production and processing of next-generation materials capable of operating in these conditions will be non-trivial, especially at the scale required in many of these applications. In some cases, totally new compositions, processing and joining strategies will have to be developed. The need for long-term reliability in many components means that defects introduced during processing will need to be kept to an absolute minimum or defect-tolerant systems developed, e.g. via fibre reinforcement. Modelling techniques that link different length and time scales to define the materials chemistry, microstructure and processing strategy are key to speeding up the development of these next-generation materials. Further, they will not function in isolation but as part of a system. It is the behaviour of the latter that is crucial, so that interactions between different materials, the joining processes, the behaviour of the different parts under extreme conditions and how they can be made to work together, must be understood. Our vision is to develop the required understanding of how the processing, microstructures and properties of materials systems operating in extreme environments interact to the point where materials with the required performance can be designed and then manufactured. Aligned with the Materials Genome Initiative in the USA, we will integrate hierarchical and predictive modelling capability in fields where experiments are extremely difficult and expensive. The team have significant experience of working in this area. Composites based on 'exotic' materials such as zirconium diborides and silicon carbide have been developed for use as leading edges for hypersonic vehicles over a 3 year, DSTL funded collaboration between the 3 universities associated with this proposal. World-leading achievements include densifying them in <10 mins using a relatively new technique known as spark plasma sintering (SPS); measuring their thermal and mechanical properties at up to 2000oC; assessing their oxidation performance at extremely high heat fluxes and producing fibre-reinforced systems that can withstand exceptionally high heating rates, e.g. 1000oC s-1, and temperatures of nearly 3000oC for several minutes. The research planned for this Programme Grant is designed to both spin off this knowledge into materials processing for nuclear fusion and fission, aerospace and other applications where radiation, oxidation and erosion resistance at very high temperatures are essential and to gain a deep understanding of the processing-microstructure-property relations of these materials and how they interact with each other by undertaking one of the most thorough assessments ever, allowing new and revolutionary compositions, microstructures and composite systems to be designed, manufactured and tested. A wide range of potential crystal chemistries will be considered to enable identification of operational mechanisms across a range of materials systems and to achieve paradigm changing developments. The Programme Grant would enable us to put in place the expertise required to produce a chain of knowledge from prediction and synthesis through to processing, characterisation and application that will enable the UK to be world leading in materials for harsh environments.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G060940/1
    Funder Contribution: 3,868,580 GBP

    This program is about using nanostructured materials to address key areas in energy related applications. This proposal will deliver world class materials science through ambitious thin and thick film development and analysis and the proposal targets the EPSRC strategic areas Energy and Nanoscience through nanoengineering. The programme grant will provide the opportunity to integrate three well established research areas that currently operate independently of each other and will establish a new consortium of activities. Collectively they offer the essential ingredients to move this particular field forward. The planned program of work is timely because of the convergence of modelling capability, precision multilayer oxide growth expertise and nanofabrication facilities. The overall vision for the Programme Grant is focussed on Energy. Within the Programme we aim to find means of reducing energy consumption for example by using electro and magnetocaloric means of cooling; generating energy by use of nanoscale rectifying antennas and finally storing energy by photocatalytic splitting of hydrogen from water. Our program is divided into two themed areas:1) Nanostructured oxides for Energy Efficient Refrigeration with 2 project areasElectrocaloricsMagnetocalorics2) Nanostructured oxides for energy production and storage with 2 project areasSolar HarvestingPhotocatalysisThis research will enable :- The development of new materials, new material architectures and new device concepts for energy refrigeration and energy harvesting. The synergy across a range of programs particularly the underpinning activities of materials theory, modelling and characterisation will move these important fields closer to application.- The research will also enable a new forum to be established, with representation from UK and European scientists and industrialists so that broad discussions can be held to enable moving these fields forward. We place a significant emphasis on training, outreach and knowledge transfer.The research challenges that need to be addressed are:- Designing physical systems that are close to an instability so that small external perturbations from magnetic or electric fields, optical or thermal excitation will tip the system into a new ground state- Optimising control over (strain, defects, doping inhomogeneity, disorder) and first layer effects in thin film oxides (with thicknesses of the order of 10nm or less) so that we can develop the capability to tune the band gap of the oxide using directed modelling and targeted growth control.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.