Powered by OpenAIRE graph

UK-China Guangdong CCUS Centre

UK-China Guangdong CCUS Centre

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/W027593/2
    Funder Contribution: 748,533 GBP

    The cooling sector currently consumes around 14% of the UK's electricity and emits around 10% of the UK's greenhouse gases. Global electricity demand for space cooling alone is forecast to triple by 2050. Moreover, as air temperature increases, the cooling demand increases, but a refrigerator's Coefficient of Performance decreases. This results in a time mismatch between a refrigerator's efficient operation and peak cooling demand over a day. Clearly, this problem will deteriorate over the coming decades. Indeed, research by UKERC recently reported that cooling sector will cause a 7 GW peak power demand to the grid by 2050 in the UK. A solution is to employ cold thermal energy storage, which allows much more flexible refrigeration operation, thereby resulting in improved refrigeration efficiency and reduced peak power demand. Large-scale deployment of cold thermal energy storage could dramatically reduce this peak demand, mitigating its impact to the grid. Moreover, the UK curtails large amounts of wind power due to network constraints. For example, over 3.6TWh of wind energy in total was curtailed on 75% of days in 2020. Therefore, through flattening energy demand, cold thermal energy storage technology provides a means to use off-peak wind power to charge cold thermal energy storage for peak daytime cooling demand. This project, based on the proposed novel adsorption-compression thermodynamic cycle, aims to develop an innovative hybrid technology for both refrigeration and cold thermal energy storage at sub-zero temperatures. The resultant cold thermal energy storage system is fully integrated within the refrigerator and potentially has significantly higher power density and energy density than current technologies, providing a disruptive new solution for large scale cold thermal energy storage. The developed technology can utilise off-peak or curtailed electricity to shave the peak power demand of large refrigeration plants and district cooling networks, and thus mitigates the impacts of the cooling sector on the grid and also reduces operational costs.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N024672/1
    Funder Contribution: 982,113 GBP

    Industrial emissions are an important source of atmospheric CO2 that must be tackled for the UK to meet its legally binding targets. CO2 emissions from industry occur typically from a number of small, low concentration sources with a wide range of flue gas compositions and impurity profiles. For example, in a refinery, CO2 is emitted from many process furnaces, hydrogen production units and power generation plant, and emission points are scattered over several km2. If a centralized CCS plant is applied, a large piping network and compression power will be required. Moreover, the capture unit would need to deal with a wide range of impurities. This is not optimal. Instead, a much more efficient capture process design involves several separate and bespoke capture units at different locations on site, sharing only a common high concentration CO2 export pipeline. It is therefore beneficial to have several compact and flexible capture units, with low operating and capital costs and high efficiency able to use waste heat from different process units. CO2 capture by using amine solvents is the most mature technology employed in most carbon capture plants, including the world's first large-scale CCS plant at Boundary Dam, Canada. This technology is considered a reference for next-generation technologies. Incremental improvements through the use of alternative amines or amine mixtures with higher capacity and/or lower regeneration/degradation costs are potentially possible. However, major problems with this conventional process remain without a fundamentally different design. They include (a) low mass transfer efficiency in the absorber and desorber, resulting in large equipment size and high capital and operating costs, (b) high energy consumption in solvent regeneration, causing a very high energy penalty and operating cost, (c) corrosion caused by concentrated amine solutions, which makes it necessary to use more expensive materials, (d) thermal and oxidative degradation of amines above 100oC. More solvent make-up means high operating cost We propose to meet this challenge by combining two technologies, rotating packed bed absorption and microwave-assisted regeneration, which will enable small and flexible capture devices to be installed at a wide range of industrial sites. A rotating packed bed column offers a dramatically reduced volume by 90% compared to a traditional absorption column, while microwave regeneration is a revolutionary method for regenerating amine solutions at 70oC (rather than 120oC) that can operate without a temperature swing and is very fast, leading to further significant reduction in capital costs (by around 50%), in the sensible heat used for CO2 desorption, and in corrosion and solvent degradation by over 90%. CO2 desorption at 70oC also enables the regenerator to use low grade industrial waste heat.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W027593/1
    Funder Contribution: 1,022,620 GBP

    The cooling sector currently consumes around 14% of the UK's electricity and emits around 10% of the UK's greenhouse gases. Global electricity demand for space cooling alone is forecast to triple by 2050. Moreover, as air temperature increases, the cooling demand increases, but a refrigerator's Coefficient of Performance decreases. This results in a time mismatch between a refrigerator's efficient operation and peak cooling demand over a day. Clearly, this problem will deteriorate over the coming decades. Indeed, research by UKERC recently reported that cooling sector will cause a 7 GW peak power demand to the grid by 2050 in the UK. A solution is to employ cold thermal energy storage, which allows much more flexible refrigeration operation, thereby resulting in improved refrigeration efficiency and reduced peak power demand. Large-scale deployment of cold thermal energy storage could dramatically reduce this peak demand, mitigating its impact to the grid. Moreover, the UK curtails large amounts of wind power due to network constraints. For example, over 3.6TWh of wind energy in total was curtailed on 75% of days in 2020. Therefore, through flattening energy demand, cold thermal energy storage technology provides a means to use off-peak wind power to charge cold thermal energy storage for peak daytime cooling demand. This project, based on the proposed novel adsorption-compression thermodynamic cycle, aims to develop an innovative hybrid technology for both refrigeration and cold thermal energy storage at sub-zero temperatures. The resultant cold thermal energy storage system is fully integrated within the refrigerator and potentially has significantly higher power density and energy density than current technologies, providing a disruptive new solution for large scale cold thermal energy storage. The developed technology can utilise off-peak or curtailed electricity to shave the peak power demand of large refrigeration plants and district cooling networks, and thus mitigates the impacts of the cooling sector on the grid and also reduces operational costs.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N024567/1
    Funder Contribution: 1,024,860 GBP

    Industry is responsible for 25% of carbon dioxide emissions from the European Union with around 60% of these emissions coming from the energy-intensive chemical, petrol refining, cement, steel and cement industries. The products of these process plants are fundamental to the global economy however many of the corresponding manufacturing processes are operating at (or are close to) their maximum practical efficiency. This reduces the impact of any future efficiency improvement measures in reducing overall carbon dioxide emissions across the sector. Industrial Carbon Capture and Storage (ICCS) is considered by the International Energy Agency (IEA) as the "most important technology" to decarbonise the industrial sector. This technology couples into industrial process plants, separates out the carbon dioxide and transports it to a suitable location for long term underground storage. In this way, the process plants are no longer venting unwanted carbon dioxide emissions directly into the atmosphere. Whilst many of the key components in ICCS have been demonstrated in pilot scale projects, the deployment of a full scale system remains a challenge due to the high capital costs associated with developing the infrastructure for carbon dioxide capture, transportation and storage. One effective means to address these issues is to share the burden by developing regional clusters of industrial process plants which all feed into a common ICCS network. This project brings together a strong academic team from Newcastle University, Imperial College and Cambridge University with significant technical support from the International Energy Agency, industrial technical experts, various CCS clusters and demonstration sites. The project will be the first of its kind to evaluate multiple potential ICCS clusters planned worldwide and assess their impact on products and consumers. It will mainly focus on a cluster planned in Teesside, UK featuring a steel furnace, ammonia manufacturing site, a hydrogen reforming facility, and a chemical plant. It will collate technical data from many of the pilot demonstrations in the United States and Europe to gain a more comprehensive understanding of the required operation of other relevant energy intensive process plants such as petroleum refineries and cement production sites. This technical data will be used to develop a set of software design tools for the planning of ICCS clusters and develop a means to optimise their operation. In addition, a robust set of economic analysis tools will be developed to support evaluation of the economics and costs associated with the technology. The impact on the supply chain will be assessed through a comprehensive outreach and public engagement exercise. Ideas for new low-carbon products will be developed and their costs evaluated. This process will include surveys and focus groups to gain opinions and data from key stakeholders who operate in the supply chains of planned ICCS clusters. This will include regular communication with business-to-business customers right through to end-users and consumers. This will be used to gain a greater understanding of attitudes towards these potential lower-carbon products and to assess the strength of consumer pull under multiple carbon pricing/policy scenarios.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N024567/2
    Funder Contribution: 169,963 GBP

    Industry is responsible for 25% of carbon dioxide emissions from the European Union with around 60% of these emissions coming from the energy-intensive chemical, petrol refining, cement, steel and cement industries. The products of these process plants are fundamental to the global economy however many of the corresponding manufacturing processes are operating at (or are close to) their maximum practical efficiency. This reduces the impact of any future efficiency improvement measures in reducing overall carbon dioxide emissions across the sector. Industrial Carbon Capture and Storage (ICCS) is considered by the International Energy Agency (IEA) as the "most important technology" to decarbonise the industrial sector. This technology couples into industrial process plants, separates out the carbon dioxide and transports it to a suitable location for long term underground storage. In this way, the process plants are no longer venting unwanted carbon dioxide emissions directly into the atmosphere. Whilst many of the key components in ICCS have been demonstrated in pilot scale projects, the deployment of a full scale system remains a challenge due to the high capital costs associated with developing the infrastructure for carbon dioxide capture, transportation and storage. One effective means to address these issues is to share the burden by developing regional clusters of industrial process plants which all feed into a common ICCS network. This project brings together a strong academic team from Newcastle University, Imperial College and Cambridge University with significant technical support from the International Energy Agency, industrial technical experts, various CCS clusters and demonstration sites. The project will be the first of its kind to evaluate multiple potential ICCS clusters planned worldwide and assess their impact on products and consumers. It will mainly focus on a cluster planned in Teesside, UK featuring a steel furnace, ammonia manufacturing site, a hydrogen reforming facility, and a chemical plant. It will collate technical data from many of the pilot demonstrations in the United States and Europe to gain a more comprehensive understanding of the required operation of other relevant energy intensive process plants such as petroleum refineries and cement production sites. This technical data will be used to develop a set of software design tools for the planning of ICCS clusters and develop a means to optimise their operation. In addition, a robust set of economic analysis tools will be developed to support evaluation of the economics and costs associated with the technology. The impact on the supply chain will be assessed through a comprehensive outreach and public engagement exercise. Ideas for new low-carbon products will be developed and their costs evaluated. This process will include surveys and focus groups to gain opinions and data from key stakeholders who operate in the supply chains of planned ICCS clusters. This will include regular communication with business-to-business customers right through to end-users and consumers. This will be used to gain a greater understanding of attitudes towards these potential lower-carbon products and to assess the strength of consumer pull under multiple carbon pricing/policy scenarios.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.