Powered by OpenAIRE graph

Kurt J. Lesker (United Kingdom)

Kurt J. Lesker (United Kingdom)

11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/X030202/1
    Funder Contribution: 971,032 GBP

    Physical vapour deposition methods are recognised techniques to fabricate reproducible and durable coatings for industrial applications. The Advanced Thin Film Sputtering Fabrication Facility (TF-FAB) will provide a state-of-the-art facility for the fabrication of functional nano and micro-coatings for energy conversion and storage, sensing and biomedical devices. TF-FAB is a fully automated dual chamber magnetron sputtering system. Each chamber will include four magnetrons and associated power supplies, multiple gas lines, helium gas injection for localised doping, large substrate handling with heating and substrate plasma bias. In-situ ellipsometry will provide vital optical information of the growing films. TF-FAB will provide a platform to develop films with fewer impurities and defects, higher density, reduced thickness to increase the efficiency of solar cells or improved adhesion, hardness and biocompatibility to increase the lifetime of a total joint arthroplasty implants. TF-FAB will enable impact research in three distinctive areas: energy materials, biocompatible coatings and functional layers. This includes the following materials and applications: -Energy materials: Chalcogenides PV, hole and electron transport layers, Na- and Mg-based storage, Solid state electrolyte, electrodes -Biocompatible coatings: Ti-based super alloys, diamond like coatings, antimicrobial films -Functional layers: current sensing, metamaterials, transparent conductors, biosensors, wear resistant The facility provides a platform for researchers to develop new inorganic thin films for energy materials, biocompatible and functional coatings. It supports unprecedented recent growth in thin film research at Northumbria University. TF-FAB is a game-changing facility for research areas that have been recognised internationally and have delivered impact at successive REF exercises. TF-FAB provides a transformational capacity increase in thin film fabrication and will create new collaborative opportunities between academia and industry for the rapid screening of new materials offering a unique breadth of materials range with high throughput and reproducibility. TF-FAB will directly support research which fits with the UK and regional 'clean growth' and 'ageing society' grand challenges. It aligns with the Engineering Research Infrastructure Roadmap under 'Materials fabrication' and also 'In-situ testing and characterisation' areas for further investment. These areas align with the Advanced Materials strategy from the Advanced Materials Leadership Council, in particular 'Materials for Health' and 'Materials for Energy'. TF-FAB will support research in energy materials, and electrical and bio-functional coatings which align with EPSRC prosperity outcomes such as 'healthy' and 'resilient' nation as well as several of the UK Innovation Strategy technologies including 'Advanced Materials and Manufacturing', 'Energy and Environment Technologies'. The system will be used to produce metal and transparent conductive oxides and dielectrics for photovoltaics, electrode materials for fuel cells and batteries, super alloys, electrical sensing and biocompatible films encompassing strategic priorities such as 'engineering net zero', 'transforming health' and frontiers in 'engineering, manufacturing and technology' and associated themes.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/L006294/1
    Funder Contribution: 374,640 GBP

    The first electronic devices using organic semiconductors have just entered the market: many displays of mobile phones consist of organic light emitting diodes (OLEDs). However, these OLED-displays are considered only the first wave of organic electronic (OE) products, with organic solar cells and organic lighting expected to follow soon. Organic solar cells are currently a very active field of research, because they have the potential to become a very cheap, large area, and flexible photovoltaic technology. They furthermore can have unique properties like custom-made shapes, semi-transparency and different colours, considerably expanding the potential market to areas where current technologies are struggling. Records for conversion efficiencies have reached values above 10% and lifetimes exceeding 10 years in the laboratory, i.e. passing important milestones that are often considered as minimum requirement to become viable for commercial applications. However, one major challenge for industry trying to commercialise this technology is: for any kind of device using thin organic semiconducting layers, its electrical and optical properties strongly depend on molecular arrangement in the organic layer, in particular for organic solar cells. To a large extent, the interdependencies between molecular structure, processing, morphology in the thin organic film, and the device properties is a black box. The current approach for improving solar cells is to make more new molecules and to run an extensive process optimisation and device testing, but there are nearly unlimited options of organic chemistry and many degrees of freedom in process parameters. This nearly trial-and-error process is consuming time and money, as well as carrying the risk that the best organic semiconductors are discarded due to wrong processing. Our project will look into this black box in a close collaboration of four industrial partners (Merck Chemicals Ltd, Kurt J. Lesker Company Ltd, Eight19 Ltd, Oxford PV Ltd) and three academic partners (ISIS Neutron and Muon Source, Diamond Lightsource, University of Oxford) and subsequently develop ways to optimise the manufacturing of organic solar cells. This involves optimisation along the complete value chain, from the design and synthesis of organic semiconductors, the development of manufacturing equipment, to the final production of organic solar cells. If successful, this project will lead to a faster market introduction of thin film solar cells that have the potential to transform the way we use solar energy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V035770/1
    Funder Contribution: 418,212 GBP

    Solar cells are an effective way to reduce greenhouse gas emissions from the generation of electricity. Apart from contributing to the major societal challenge that climate change poses, organic solar cells (OSCs) have many exciting new applications resulting from their remarkable physical properties that sets them apart from other solar cell technologies. Their mechanical flexibility allows the integration in wearable textiles and electronic appliances, lightweight and semitransparent designs allow the deployment and retrofitting as facades for greenhouses, and low costs combined with efficient indoor operation makes OSCs feasible to supply low-power sensors for the internet of things (IoT). Overall, OSCs offer a cost-effective, scalable, and environmentally friendly way of generating renewable energy. Wide commercial success of OSCs requires further improvements in efficiency, and a stronger focus in research on industrially relevant technologies. The proposed research will identify and improve critical physical processes in OSCs. The applied materials are highly relevant to industrial production. I thereby pursue pathways to break today's limits in power conversion efficiency (PCE) and seek to push the commercialization of the technology. To identify routes towards real-world economic impact, it is worth looking at the precedent established by organic light emitting diodes (OLEDs). The commercial success of OLEDs was stimulated by so-called 'small molecules' that offer reproducible synthesis and purification, as well as longterm device stability over several years. Similarly, small molecules (SMs) rather than polymers are the most likely material choice for upscaled industrial OSC production. In terms of device function, OSCs apply an intimately mixed blend of two molecular species to generate electrical power from incoming light. The complex influence on the efficiency by the structural arrangement of molecules relative to each other is a flourishing field of research. Recently, the intermixing of the two species has been identified as the key structural property to affect OSC performance. The proposed research focuses on polymer-free All-Small-Molecule OSCs (ASM-OSCs). The core objective of my work is to build quantitative models that relate the mixing behaviour in an OSC blend to its optoelectronic properties and the resulting performance. From there, guidelines for the design of novel molecules and the deposition process are drawn and put into practice. Central to achieving these objectives are advanced optoelectronic measurements to characterize the energetic landscape and the transport and recombination dynamics of charge carriers. The holistic study of ASM-OSCs deposited from solution and in vacuum yields comprehensive and widely applicable quantitative descriptions of structure-function-performance relationships. The developed models, guidelines, and improved efficiency contribute to the advancement of solution- and vacuum processed OSC technology. Both deposition routes are highly relevant to industrial production. The proposed work will result in unprecedented high PCEs for ASM-OSCs and thereby facilitate the technology's commercial success. Ultimately, the undertaken research aims at reducing global CO2 emissions to tackle climate change, and to foster manufacturing and innovative applications in the UK and worldwide. The Department of Condensed Matter Physics at the University of Oxford offers the ideal environment for my research with excellent facilities for optoelectronic characterization and outstanding fabrication tools such as the EPSRC-awarded national thin-film cluster. National and international partners from academia and industry will support my research through synchrotron-based structural characterization, ultrafast spectroscopy, molecular simulations, synthesis of new molecules, and identification of ways to transfer research findings into commercial applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M015173/1
    Funder Contribution: 2,476,880 GBP

    Wearable technologies such as smart glasses have recently caused much excitement in the business and technology spheres. However, these examples use relatively conventional technologies. The real breakthrough in wearable technologies will come when we can manufacture materials and components that are flexible and non-intrusive enough to be integrated into everyday items, such as our clothes. The main challenges to achieving this are the lack of reliability, performance limitations of (opto)electronics on flexible substrates, and the lack of flexible power sources. Much of the necessary device technology exists in some nascent form; our proposal will provide the technological innovation to allow its manufacture in a form compatible with wearable technology. In this project we aim to solve a key technological challenge in wearable technologies, namely that of scalable and cost-effective manufacturing by taking advantage of the following areas of UK technological excellence in components and scale-up technologies: 1) The assembled consortium has an emphasis on inventing and demonstrating the key wearables technologies required on flexible substrates for displays, energy harvesting and sensing. 2) The consortium consists of key researchers in the fields of modeling prediction, metrology, systems integration and design for reliability, all required to complement the device engineering. 3) Importantly, by integrating, right from the word go, the aspect of Roll-to-Roll (R2R) scale-up of manufacturing such flexible technologies, we will create the manufacturing know-how to allow fundamental science to translate into manufacturing. The deposition processes for all wearables face similar challenges such as low material yield, high waste (important for functional films where minimizing waste saves costs substantially) and lack of in-situ process monitoring. Additionally, for our targeted applications, there is currently no scalable cost-effective manufacturing technology. Roll-to-roll processing fulfills this crucial need and our aim will be to enable this scalable manufacturing technology for inexpensive production on flexible substrates, an area very much underexplored in terms of advanced functional materials, but one with huge potential.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F029624/2
    Funder Contribution: 1,806,680 GBP

    PV-21 is the UK's inorganic solar photovoltaic (PV) research programme / this proposal is for a renewal for the second four year cycle. The Consortium has sharpened its focus on the science that will deliver our medium to long term goal of 'making a major contribution to achieving competitive PV solar energy'. In its initial period of activity, the Consortium has put in place lab-scale facilities for making three main types of solar cells based on thin film absorbers - copper indium diselenide, cadmium telluride and ultra thin silicon - using a range of methods. In the renewal programme, these three 'Technology Platforms' form the basis for testing new processes and concepts. To reduce costs, we shall concentrate on critical materials and PV device issues. For large-scale PV manufacture, the materials costs dominate, and together with module efficiency determine the cost per kW peak. A closely related issue is sustainability. For example the metal indium is a key component in PV, but is rare and expensive ($660/kg in 2007). Reducing the thickness of semiconductor by one millionth of a metre (1 micron) in 10% efficient cells with a peak generating capacity of 1GW would save 50 tonnes of material. The renewal programme therefore includes work on both thickness reduction and on finding alternative sustainable low cost materials (absorbers and transparent conductors). To increase efficiency we shall work on aspects of grain boundaries and nanostructures thin films as well as on doping. Nanostructures will also be exploited to harvest more light, and surface sensitization of thin film silicon cells by energy transfer from fluorescent dyes will also be investigated as a means of making better use of sunlight and substantially reducing the required film thickness to as low 0.2 microns. In order to ensure a focus on cost effectiveness, the renewal programme includes a technical economics package that will examine cost and sustainability issues. Future links between innovative concepts and industry are ensured by a 'producibility' work package. Two highly relevant 'plus' packages have been submitted alongside the renewal proposal, these being on a) thin film silicon devices, grain engineering and new concepts, and b) new absorber materials. The Consortium will also continue to run the successful UK network for PV materials and device research, PV-NET, which is a forum for the UK academic and industrial research communities. The Supergen funding mechanism has enabled the Consortium to assemble and fully integrate a critical mass of PV researchers in the UK, and the work packages outlined in the proposal interweave the skills and capabilities of seven universities and nine industrial partners. PV-21 is also plays an important role in skills development, with nine PhD students due to be trained in the first cohort. The EPSRC Supergen funding mechanism is absolutely vital for the continued growth and strength of the UK PV materials research effort.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.