Powered by OpenAIRE graph

STM CROLLES

STMICROELECTRONICS CROLLES 2 SAS
Country: France
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
91 Projects, page 1 of 19
  • Funder: French National Research Agency (ANR) Project Code: ANR-06-NANO-0061
    Funder Contribution: 549,233 EUR
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-08-NANO-0038
    Funder Contribution: 1,490,220 EUR
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-05-NANO-0043

    Le but du projet MEMOIRE est de développer de nouvelles mémoires à grille flottante à nanocristaux en Si ou Ge visant à remplacer les mémoires flash actuelles. Cette nouvelle technologie, qui a acquis une grande maturité ces dernières années, se confronte aujourd’hui encore à des problèmes de reproductibilité, de compréhension des mécanismes de stockage des charges et de développement des composants, qui doivent être résolus avant son introduction dans l’industrie. MEMOIRE est un projet interdisciplinaire alliant l’engineering des composants à la physique pure, dans lequel les principes physiques fondamentaux sont utilisés pour lever des verrous technologiques à la frontière des applications. Ce projet permet de créer une chaîne complète de compétences de la manipulation / élaboration des NC, à la modélisation, fabrication et caractérisation électrique des transistors et des mémoires. Le principal challenge du projet est d’obtenir le contrôle parfait des structures élémentaires fabriquées afin de permettre la compréhension des mécanismes électriques locaux et la modélisation appropriée des composants. Le travail sera réparti en quatre tâches : 1) fabrication de la grille flottante à NC et des composants; 2) modélisation de la nanostructuration du substrat et auto-assemblage des NC ; 3) modélisation des dispositifs ; 4) fabrication et caractérisation électrique des dispositifs élémentaires. Grâce à la complémentarité des partenaires, le projet permettra des avancées majeures tant dans la compréhension des mécanismes de base que dans le développement de nouvelles architectures de composants. Le consortium s’attachera aussi particulièrement au transfert technologique des procédés mis en oeuvre en laboratoire vers le partenaire industriel.

    more_vert
  • Funder: European Commission Project Code: 214948
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-14-CE26-0023
    Funder Contribution: 624,627 EUR

    Digital and analytical functions performed by today’s semiconductor devices are governed by the electronic transport across an engineered material system with a well-defined electronic structure. Even if a multitude of electrons are concerned in the device operation, the device fundamental characteristics arise from properties inherent to single electrons. For instance, photon emission is related to transitions between electronic states of the system and for optoelectronic devices operating in the mid and far infrared wavelength range is characterized by an extremely long spontaneous emission time (>100ns), which hinders the realization of efficient light emitting diodes. In this project we plan to realize novel optoelectronic devices, whose performances do not belong to single electron properties, but rather depend on the ensemble of the interacting carriers. We recently demonstrated that the optical properties of a dense electron gas do not reflect the energy spectrum, but depend on the Coulomb interaction between electrons. The absorption spectrum of a semiconductor quantum well with several occupied energy levels presents a single absorption peak at an energy completely different from the single particle transition energies. This unique optical resonance, concentrating the whole interaction with light, corresponds to a many-body excitation of the system, the “multisubband plasmon”, in which the dipole-dipole Coulomb interaction locks in phase the optically allowed transitions between confined states. In this project, the peculiar properties of multi-subband plasmons will be exploited for mid and far infrared optoelectronics. The first property is the fact that, as the permittivity of multisubband plasmons depends on the doping level and on the size of the quantum well, semiconductor layers with ad hoc dielectric properties (hence metamaterials) can be realized. As a first application we will design all-dielectric waveguides in the mid and far infrared for quantum cascade lasers. A second application will be the design of engineered infrared absorbers. The second part of the project is based on another fundamental property of collective electronic excitations: their superradiant nature. Indeed the multisubband plasmon is the bright state issued from the coherent superposition of several intersubband excitations. As a superradiant state can be visualized as one in which a macroscopic polarization is established over a region of space, a very interesting way to characterize this state will be its observation by using Electron Energy Loss Spectroscopy. The superradiant nature of multisubband plasmons results in a radiative lifetime of the order of few hundreds fs, thus much shorter than the typical intersubband spontaneous emission lifetime. We will exploit this property to conceive and realize two different classes of optoelectronic infrared emitters based on many-body excitations: - Quasi-monochromatic fast and tunable incandescent sources - Quantum engineered superradiant emitters The first kind of devices is based on the same geometry as a field effect transistor: the electron gas is excited by a source – drain current, while the electronic density can be controlled by a gate voltage. This point will be also studied in collaboration with STMicroelectronics, which will provide FDSOI and CMOS devices, in order to observe far-infrared optical signals in state-of-the-art electronic devices. In order to fully take advantage of the superradiant character of multisubband plasmons, another generation of devices will also be conceived, realized and characterized, using quantum engineering for resonant excitation. We will design a device based on vertical transport through the electron gas, a plasmon assisted tunnelling device. More selective injection mechanisms will also be investigated, by exploiting the dipole-dipole interaction in systems of tunnel coupled quantum wells.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.