Powered by OpenAIRE graph

SPTS Technologies

SPTS Technologies

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S024441/1
    Funder Contribution: 6,891,370 GBP

    TOPIC: "Semiconductors" are often synonymous with "Silicon Chips". After all Silicon supported computing technologies in the 20th century. But Silicon is reaching fundamental limits and already many of the technologies we now take for granted are only possible because of Compound Semiconductors (CS). These technologies include The Internet, Smart Phones, GPS and Energy efficient LED lighting! CSs are also at the heart of most of the new technologies expected in the next few years including 5G wireless, ultra-high speed optical fibre connectivity, LIDAR for autonomous vehicles, high voltage switching for electric vehicles, the IoT and high capacity data storage. To date CSs are made in relatively small quantities using fairly bespoke manufacturing and manufacturers have had to put together functions by assembling discrete devices. But this is expensive and for many of the new applications integration is needed along the lines of the Silicon Integrated Chip. CDT research will involve: the science of large scale CS manufacturing (e.g. materials combinations to minimise wafer bow, new fabrication processes for non-flat surfaces); manufacturing integrated CS on Silicon and in applying the manufacturing approaches of Silicon to CS. The latter includes using generic processes and generic building blocks and applying statistical process control. By applying these approaches students will address and invent new ways to exploit the highly advantageous electronic, magnetic, optical and power handling properties of CSs and generate novel integrated functionality for sensing, data processing and communication. NEED: This CDT is a critical part of the strategic development of a CS Cluster supporting activity throughout the UK. It is part of the development of a wider training portfolio including apprenticeships and CPD activities, to train and upskill the CS workforce. Evidence of the critical need for a CDT, has been identified in a survey and analysis conducted by UK Electronics Skills Foundation highlighting the specific skills required in this rapidly growing high technology industrial sector. "We are looking for PhD level skills plus industry experience. We don't have the time to train up new staff." "There are no 'perfect employees' for CS companies, as this is effectively a new area. Staff, including those with PhDs, either have silicon skills and need CS-specific training, or have CS skills and need training in volume tools and processes, either in the cleanroom or in packaging." - quotes from CS Skills Survey - Report UKESF July 2018. We have worked with the CSA Catapult utilising the skills need they have identified as well as companies across the spectrum of CS activities and are confident of the absorptive capacity: the expected PhD level jobs increase for the existing cluster companies alone would employ all the students and the CDT will support many more companies and academic institutions. APPROACH: a 1+3 programme where Year 1 is based in Cardiff, with provision via taught lectures using university approved level 7 modules and transferable skills training, hands on and in-depth practical training and workshop material supplied by University and Industry Partner staff. A dedicated nursery clean room to allow rapid practical progress, learning from peer group activity and then an industry facing environment with co-location with industry staff and manufacturing scale equipment, where they will learn the future CS manufacturing skills. This will maximise cross fertilisation of ideas, techniques and approach and maximise the potential for exploitation. Y2-Y4 consist of an in depth PhD project, co-created with industry and hosted at one of the 4 universities, and specialised whole cohort training and events, including communication, responsible innovation, entrepreneurship, co-innovation techniques and innovative outreach.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L020734/1
    Funder Contribution: 564,437 GBP

    This project will develop high-volume, quality controlled, low-cost, bespoke, silicon microneedle (MN) devices for specialised Point of Care (POC) health applications. Device specifications will be defined by a comprehensive characterisation and analysis of human skin parameters (elasticity, deformation, epidermal thickness at different sites and between different people of different ages), with respect to MN delivery A range of novel MN products will be tested in clinical skin models to demonstrate their utility for easy-application and painless transdermal injection in drug and vaccine delivery. The key benefit of silicon MNs is the flexibility, scalability of manufacturing; it is this aspect that we focus on in this application, developing personalised but scalable manufacture for personalised medicine. The project combines microfabrication and manufacturing expertise (SU / SPTS) with pre-clinical and clinical results from Cardiff University (CU). We will develop novel hollow MN array drug and vaccine delivery systems and demonstrate their potential in clinical practice. Considerably finer and shorter than any hypodermic syringe needle, MN devices are relatively painless, (they do not puncture deep enough into the skin to stimulate pain), and cause appreciably less damage to skin than traditional hypodermics. This is critical in where patients will require regular therapy. MNs will provide targeted therapy to the appropriate skin compartment. E.g. in vaccination, administering antigens to the epidermis (the top 75-150 um of skin) where the immune processing Langerhans cells reside will provide a robust,whole body immune response to the vaccine. Targeting of this zone may lead to a more efficient immune response (potentially without the need for potentially harmful adjuvants) and hence dose-sparing of the difficult to manufacture vaccine. A completely novel plasma etch and masking process will be used (SU / SPTS) to fabricate a range of sharp, hollow MNs up to 1mm in length. Currently, sharp MNs are produced using a wet chemical etch or a combined wet and plasma etch process. Our new flexible, cost-effective plasma etch process will be used to manufacture a range of MNs of different heights for personalised drug and vaccine delivery, based on the results of skin parameter testing. Our novel bevelled MN design - developed using SPTS' deep silicon etch technology - will facilitate MN skin penetration using low injection forces. The new, simple MN drug / vaccine delivery system could revolutionise the multi billion dollar drug delivery markets enabling for the first time the effective transcutaneous delivery of a wide range of low molecular weight drug molecules including: diclofenac, ketoprofen, methotrexate, sumatriptan, methyl nicotinate and lidocaine, and targeted vaccine delivery against influenza, hepatitis C, measles, polio, rabies and tuberculosis. Optimisation of hollow MN designs will allow injection of viable drug and vaccine dosages. Manufacture of hollow silicon MNs also opens up a whole new field of novel applications in fluid sampling combined with sensor diagnostics. Extracting interstitial fluid in volumes substantial enough for analysis will facilitate "pain free" testing of small analyte molecules. Preliminary studies will evaluate the novel MN products arising from this project for potential use in glucose testing . Scale-up of device fabrication from small samples to full wafers, to multi-wafer production, will be achieved through integral partner SPTS' wafer-cassette loaded, multi-process-chamber tools. SPTS, the global leader in semiconductor and MEMS process equipment, is the ideal partner for high-volume, low-cost manufacture of specialised silicon MN products. SPTS will ensure manufacturing methods and materials used to make the MN devices are cost effective for scale-up production. The MN market is ripe for exploitation using new MN designs, capable of being manufactured on a volume scale.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L024799/1
    Funder Contribution: 922,580 GBP

    We propose to establish a Healthcare Impact Partnership for research which is stimulated by an unmet clinical need for improved monitoring and prediction of abnormal clotting responses to therapy or disease. Thromboembolic disease and associated blood clotting abnormalities cause significant morbidity and mortality in Western society, with stroke being the third-leading cause of death in the UK. Clotting abnormalities are responsible for thousands of preventable deaths annually inside UK hospitals and increasing numbers of NHS outpatients require monitoring of oral anticoagulant therapy (e.g. warfarin). But correlation of standard clotting tests to clinical outcome has been unsatisfactory, with uncertain healthcare benefits and limited clinical utility in terms of informing responses to ongoing treatment or disease progression. We wish to overcome these shortcomings by exploiting our advances in nanotechnology and clot detection. They provide the basis of a new way of monitoring, assessing and predicting the key microstructural and mechanical properties of fully-formed clots, based on information acquired within a few minutes in near-patient tests on small samples of blood. The fully-formed clot's microstructure determines its mechanical strength (hence ability to prevent bleeding) and its resistance to breakdown and dispersal by the body. Abnormalities in these properties are linked to significant health risks. Our discovery of the fractal microstructure of incipient ('infant') clots and its role in templating fully-formed ('mature') clots provides the basis of our proposal. We have established its feasibility through advanced imaging and analysis of model (fibrin-thrombin) clots. We now need to do this in therapeutically and pathologically modified blood. But our previous imaging techniques are not suitable for blood and we plan a new approach. Our work on nanoparticle fluorescence has established advanced identification/tracking techniques and we have implemented them to study biological cells. We plan to translate these approaches to analyse abnormal microstructure development in blood clots. The concept is based on interrogating nanoscale moving light displays (clusters of light), formed by fluorescent nanoparticles loaded into blood samples. An exciting aspect involves analysing clot deformation in response to stress. The light arrays provide a binary map of points delimiting clot structure and reporting deformation. We anticipate that this concept will provide a 'world-first' in yielding linked microstructural and mechanical properties of evolving clots, in the same measurement. The improved monitoring, assessment and prediction capabilities arising from this work will underpin (i) improved monitoring of clotting responses to anticoagulant and/or antiplatelet (e.g. aspirin) therapies; (ii) improved predictions of clot breakdown in response to therapy; (iii) improved dose response assessments of these treatments, and (iv) a basis for abnormal clot screening in patients who, while taking warfarin, suffer recurrent deep vein thrombosis or pulmonary embolism while appearing adequately anticoagulated in terms of present tests (INR). Our Healthcare Impact Partnership will provide the framework for collaboration between (i) experts in nanotechnological aspects of devices, imaging and analysis of biosystems; (ii) industrial partners with expertise in medical devices and microfabrication; and (iii) the Haemostasis Biomedical Research Unit (HBRU) at ABMU NHS Trust Hospital Morriston Swansea. The HBRU, with its expert clinical scientists and NHS Consultant colleagues, provides the clinically-facing focus for our studies, and their translation. Our industrial partners bring expertise which we foresee will underpin the development of technologies for near-patient tests both inside and outside hospital care settings.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.