SSE Renewables
SSE Renewables
4 Projects, page 1 of 1
assignment_turned_in Project2022 - 2024Partners:Loughborough University, Fibre Technology Ltd (Fibretech), Fibre Technology Ltd (Fibretech), SSE Renewables, Arenko +3 partnersLoughborough University,Fibre Technology Ltd (Fibretech),Fibre Technology Ltd (Fibretech),SSE Renewables,Arenko,SSE Renewables,Loughborough University,Arenko GroupFunder: UK Research and Innovation Project Code: EP/W033119/1Funder Contribution: 162,381 GBPEarlier this year, the UK government in keeping with many other nations laid out its hydrogen strategy plan. This equates to a target of 5GW of low carbon hydrogen production by 2030. Presently, the most common production route for hydrogen is steam methane reformation. Hydrogen can also be produced through electrolysis of which there are four main types; alkaline, PEM, Anion exchange membranes and solid oxide. The Anion exchange membrane is currently <5000 hours life span and the solid oxide electrolyser has a stack capital cost that exceeds £1500/kWe. The alkaline electrolyser is cheaper at a stack cost of £200/kWe and the PEM is close to £300/kWe. The total cost including balance of plant is closer to £700-£1000/kWe including rectifiers, H2 purification, water supply and purification and cooling. Most units are manufactured at around 1MW, however, there are plans for a 20MW trial unit. The government has also pledged to move to 100% renewable energy and therefore to meet the technical requirements around electricity grid stability including meeting winter peak at times of low wind, additional capacity renewable generation needs to be installed. Instead of curtailing a wind farm due to grid based operational constraints, the energy produced as part of this can be used to produce hydrogen at minimal extra operating cost. The cost of the hydrogen therefore depends on the capital costs of the technology, storage and transport. If there is ample free electricity, for which there is little other use, then the efficiency of the hydrogen producing is less of an issue than its cost. This proposal looks at using an alternative and complimentary technology to electrolysers to achieve this; the battolyser. A battolyser is a battery/electrolyser combined and is based on aqueous flow battery technology. Because it is pre-designed for battery functionality too, the electrodes may be more stable than those in an electrolyser. Flow batteries are being designed in scales of up to 100MW, 500MWh compared to Electrolysers at a planned 20MW and therefore there is good potential to scale up battolyser technology quickly once it passes early stage TRL hurdles. Additional advantages of a battolyser include the use of low hazard chemicals and the higher availability of materials used in manufacture. There is also additional potential to link into existing recycling facilities helping with long term sustainability planning. As the battolyser is a single device which can produce both electricity and hydrogen it has the potential to be more economically viable than an electrolyser because of the multiple value streams. This project will research the potential of a battolyser to produce low cost green hydrogen. The project aims to show that this is both financially viable and technically possible by modelling, prototyping and characterising a green hydrogen producing battolyser in conjunction with an offshore wind farm. The team based at the Centre for Renewable Energy Systems Technologies (CREST) at Loughborough University will be joined by wind farm experts from Strathclyde University and partner companies FibreTech, Arenko and SSE to complete this research into zero emission hydrogen.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c312ac5e3f77471face955e260e27529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c312ac5e3f77471face955e260e27529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2027Partners:Clas-SiC Wafer Fab Ltd, JDR Cable Systems Ltd, Siemens Energy Ltd, Driving the Electric Revolution -IC, Siemens Energy Ltd +6 partnersClas-SiC Wafer Fab Ltd,JDR Cable Systems Ltd,Siemens Energy Ltd,Driving the Electric Revolution -IC,Siemens Energy Ltd,Driving the Electric Revolution -IC,SSE Renewables,SSE Renewables,University of Edinburgh,Clas-SiC Wafer Fab Ltd,JDR Cable Systems LtdFunder: UK Research and Innovation Project Code: EP/X035867/1Funder Contribution: 913,614 GBPThe Wind2DC project will develop co-designed mechanical and electrical novel power take off systems for offshore wind-turbines that will these wind-turbines to be directly connected to a medium voltage dc (MVDC) collector system, as opposed to the ac collector systems that are current used. This will help exploit the full potential of offshore floating wind by: (1) reducing system costs, (2) Increasing the feasible size of offshore wind-farms, and (3) alleviate expected issues with dynamic cabling that will arise in floating wind-turbines. This supports the UK commitment to Net Zero by 2050 by enabling access to a large fraction of the estimated 4 TW of energy that is accessible from offshore wind. The project is strongly supported by industry, including Siemens Energy, Clas-SiC, JDR Cables, SSE Renewables. Floating Offshore Wind Turbine technology has the potential to unlock wind resources in offshore areas in which it is unfeasible to use conventional fixed-bottom turbine structures. This would provide a significant increase in exploitable offshore wind resources, with higher capacity factors than onshore or fixed-bottom offshore wind resources. The European floating wind resource has been estimated at 4 TW, a large share of which is located off Scotland and the south-west of England. To date, all offshore wind-farms have utilised ac electrical collection systems (in which the voltages and currents oscillate) to gather the power from each wind-turbine in the farm together before it is transmitted back onshore. In wind-farms close to shore, this transmission is also done using an ac system. in wind-farms that are far offshore the power is usually converted to dc (in which the voltages and currents are steady values) and transmitted back onshore through a High Voltage dc (HVDC) transmission line. Such systems require power-electronic converters to change the power from the wind-farm between ac and dc on both ends of the HVDC line. The advantage of dc systems is that the amount of conductors within the transmission cables is substantially reduced and, unlike ac transmission systems, there is no feasible limit on the length of the transmission system. Floating offshore wind-turbines devices require dynamic collection network cabling that can withstand the movement of the floating offshore wind-turbine platforms. In waters deeper than 100m it is difficult to fix the array cables to the seabed, leading to proposals in which the entire cable collection network is also floated. For such propositions a move to a Medium Voltage DC collection (MVDC) network, rather than a conventional ac collection network, would bring substantial benefits in reducing the weight of the cables themselves, as well as increasing their flexibility due to the reduction in conductor sizes need for a given power rating when moving from ac to dc. One of the main barriers to realising these MVDC collection networks is the unavailability of wind-turbine power-take off systems that are compatible with a high-power MVDC network voltages (expected to be in the region of 100 kilovolts plus). The Wind2DC project will focus on developing light-weight efficient power take off systems for Offshore Wind Turbines, providing a direct MVDC transmission compatible voltage output from each offshore wind-turbine, addressing the issue of cost-effective collection architectures, and enabling large scale offshore wind-turbines arrays with floating dynamic cabling. To do this the project will exploit novel generator, generator interface converter and dc-dc converter designs, with a focus on collaborative co-design of each of these aspects between the university teams that make up the project. To achieve this the researchers will exploit the potential next-generation wide bandgap semiconductors, which offer substantially increased voltage ratings as well as reduced switching losses, and novel modular electrical generator designs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8a7bf7d2efb183159a8bbc34256d895e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8a7bf7d2efb183159a8bbc34256d895e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2026Partners:NatureScot (Scottish Natural Heritage), Marine Management Organisation, UK Centre for Ecology & Hydrology, Marine Management Organisation, UK Ctr for Ecology & Hydrology fr 011219 +10 partnersNatureScot (Scottish Natural Heritage),Marine Management Organisation,UK Centre for Ecology & Hydrology,Marine Management Organisation,UK Ctr for Ecology & Hydrology fr 011219,Scottish Renewables,Neart na Gaoithe Offshore Wind Ltd,UK CENTRE FOR ECOLOGY & HYDROLOGY,Scottish Renewables,Crown Estate Scotland (Interim Managemen,Crown Estate Scotland (Interim Managemen,SNH,Neart na Gaoithe Offshore Wind Ltd,SSE Renewables,SSE RenewablesFunder: UK Research and Innovation Project Code: NE/X009068/1Funder Contribution: 655,280 GBPThe UK government currently faces an acute risk to energy security from de-carbonisation associated with the global climate emergency, recent energy price rises and the threat of hydrocarbon supplies due to the conflict in eastern Europe. In the light of these events, targets for electricity generation from renewable sources have been increased. Offshore Wind (OW) will make a significant contribution to meeting these targets, but the timeline necessitates a 25% increase in the pace of OW deployment. The UK Government believes this acceleration can be achieved by making environmental assessments at a more strategic level, implementing nature-based design standards and reducing red tape. Seabird impacts are the top consenting issue inhibiting OW expansion in the UK sector of the North Sea (especially black-legged kittiwake, common guillemot, razorbill and Atlantic puffin). Policy proposals for overcoming these issues include making environmental assessments at a more strategic level, adopting strategic compensation measures, and delivering net gain to seabird populations and the wider marine ecosystem that is robust to climate change. Our project addresses three key Research Questions (RQs) designed to deliver urgently needed advice to ensure that these policies are implemented in ways which simultaneously deliver both OW expansion and net gain for seabirds and the ecosystem: RQ1. What are the cumulative impacts of OW on seabirds and on the wider ecosystem, and how do these scale with capacity? RQ2. What scale and extent of compensatory measures are required to provide strategic headroom of net gain to seabirds and the whole ecosystem while avoiding unforeseen consequences? RQ3. How can we incorporate sufficient headroom in strategic compensation to ensure it remains robust to future projections of climate change? Our project will focus on the key North Sea OW-seabird interaction area off southeast Scotland, but all the methods will be transferable to other UK regions. To answer the Research Questions we will use a range of inter-related models of ecosystem, seabird, forage fish and zooplankton dynamics together with new supporting data. The models will be deployed in innovative new ways to address the policy-driven challenges and make the results accessible to stakeholders through online tools. The new data collection will involve novel use of autonomous underwater and remote controlled uncrewed surface vehicles (AUV and USV) working in concert and integrated with the digital aerial seabird surveys commissioned in support of existing environmental programmes by the OW industry and as part of the Crown Estate OWEC programme. The combined AUV and USV surveys will gather multi-frequency hydroacoustic data on forage fish (sandeel and sprat/herring) patchiness in control areas not yet developed for OW, and existing OW farms. The coincident aerial surveys will gather high resolution data on seabirds. These matched predator-prey data will provide crucial process-based understanding on predator-prey interactions needed to estimate cumulative impacts on seabirds (RQ1) and develop effective strategic compensation (RQ2). Data to support RQ3 on modelling of climate-proofing for strategic compensation measures will be assembled from UK AMM7 biogeochemical model projections of ocean physics and chemistry under the IPCC RCP8.5 emissions scenario. Developers and stakeholders will be engaged early in the project to design a suite of potential strategic compensation scenarios which will be incrementally tested as the project progresses. Policy briefs setting out the findings and advice-to-date will be produced at annual intervals to ensure that the new evidence and tools developed in the project are fed rapidly into the decision-making process.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cb99a47eba1353d0c995937871548d9f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cb99a47eba1353d0c995937871548d9f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2032Partners:ABM, Circular Carbon, Severn Trent Green Power Group Ltd., Centre for Process Innovation CPI (UK), Nestling Engineering +21 partnersABM,Circular Carbon,Severn Trent Green Power Group Ltd.,Centre for Process Innovation CPI (UK),Nestling Engineering,SSE Renewables,Croda Europe Ltd,Nestlé (United Kingdom),Griffith University,Sterling Pharma Solutions Ltd.,BOC Linde,Horiba UK Ltd,Reckitt Benckiser (United Kingdom),Thomas Swan (United Kingdom),Northumbrian Water Group plc,TNO,Green Rose Chemistry,PuriFire Labs Ltd,BSC Separation Technology,Biofuel Evolution,Procter and Gamble,Newcastle University,Durham Filtration Limited,KD Pharma,AM Technology (United Kingdom),North East Process Industry ClusterNEPICFunder: UK Research and Innovation Project Code: EP/Y034961/1Funder Contribution: 8,667,020 GBPThe future 'Net Zero Economy' will be based on new forms of energy (e.g., renewable electricity and hydrogen), new feedstocks (sustainably sourced biological and waste materials), and a new depth of data. These changes present particular problems for the process industries (bulk and fine chemicals, food and beverages, pharmaceuticals, manufacturing, and utilities etc). To 'Engineer Net Zero' in these industries, they must undergo the most profound transformation since the industrial revolution. To accommodate these new energy types, novel feedstocks and new data, entirely new processes, process technologies and green chemical routes will have to be developed. The scale of the challenge is enormous; manufacturing alone accounts for ~10% of the total economic output of the UK (£203bn Gross Value Added) and ~7% of UK jobs (HMG, 2022). Research Challenges: The PINZ CDT will help to 'Engineer Net Zero' by developing new processes, green chemistries, and process technologies, via Research for Technology Transfer (O2) at the interfaces of process and chemical engineering, and the biological, chemical and data sciences. Our Research Themes (T) have been informed by and co-created with industry: (T1) Energy: The use of renewable electricity and hydrogen demands new ways to perform process steps (reactions, separations, heat transfer) and whole process design. (T2) Feedstocks: Sustainable feedstocks/raw materials and solvents (bio-based, carbon-neutral, waste-derived), will force the development of new process chemistry and technology. (T3) Data: The increasing quantity and quality of data (in-process, LCA, TEA) will dramatically change how we design, operate, and monitor processes. Training Challenges: Build Back Better: Our Plan for Growth (HMT, 2021), and The UK Innovation Strategy: Leading the Future by Creating It (BEIS, 2021) highlight a strategic focus on skills development, innovation, and Net Zero to transform the UK into a global science and engineering superpower. To meet these substantial challenges and maintain the UK as a technology hub and global leader in innovation in the process industries, the UK requires pioneering, innovative, and knowledgeable chemical engineers/chemists. These world-class, doctoral-level graduates will not only be required to navigate these challenges: they will need to lead the change. The PINZ CDT will create these 'Net Zero-enabled' future leaders via a nurturing, supportive and collaborative training environment, which will equip the researchers with the tools to develop, analyse, evaluate, and implement new technologies and processes during their projects and future careers. Student-Centred Training (O1) will underpin everything we do, tailoring research training both at the individual and CDT level, alongside the provision of the management, entrepreneurship, and business skills that industry demands. Throughout their training, we will facilitate peer-to-peer interactions within and across cohorts to build a community and engender a broad exchange of ideas. This is especially important when working with students from diverse academic and personal backgrounds and recognises the contribution diversity makes to a challenge on the scale of Net Zero. Delivery: PINZ will be led by the world's largest Process Intensification Group (PIG, Newcastle University), and the world-leading Green Chemistry Centre of Excellence (GCCE, University of York), leveraging >40 years of combined experience in technology transfer and >40 ongoing industrial partnerships. Only through this combination of the 'biggest and best' can the internationally leading education, training, and research needed to produce the next generation of leaders and innovators for Net Zero be realised.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::79fcef025367c7457163c4027f30df6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::79fcef025367c7457163c4027f30df6d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu