FEI
30 Projects, page 1 of 6
Open Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2021Partners:MPG, FZJ, CNR, UNIMORE, University of Glasgow +3 partnersMPG,FZJ,CNR,UNIMORE,University of Glasgow,UM,FEI,QED FILM & STAGE PRODUCTIONS LTDFunder: European Commission Project Code: 766970Overall Budget: 2,997,680 EURFunder Contribution: 2,997,680 EURQ-SORT introduces a revolutionary concept whereby the TEM is employed as a Quantum Sorter. All TEM techniques are in fact limited to the imaging and energy spectroscopy of the electron wavefunction. Moreover, when a single sample property is sought, most of the image information is useless, a waste that cannot be afforded in dose-sensitive materials. The Quantum Sorter leverages the recently-acquired capacity to structure e-beams, which implies that if, in a quantum experiment (tunable state preparation, interaction, analysis), the analysis is performed over the ‘optimal’ basis of quantum states, very few electrons are necessary for the full characterisation of a sought property, i.e. the TEM can be tuned to answer a single question but with maximum efficiency. To this end, Q-SORT introduces a new parallel analysis strategy, based on a suitable conformal mapping of the wavefunction: the starting point is the analysis of orbital angular momentum (OAM), but building a recipe for diagonalising a wider range of observables is one of the planned Breakthroughs of Q-SORT. This will in turn allow Q-SORT to achieve three other high-risk Breakthroughs of vast applicability: assessing the OAM of plasmonic resonances in select nanoparticles, achieving atomic-resolution magnetic dichroism, identifying different proteins based on selected properties. We believe that the Quantum Sorter will become so important that it will eventually be part of every state-of-the-art TEM, since the new technology is easy to integrate with energy-loss spectrometry. The project consortium includes some of the world leaders in optical and electronic vortex beams, as well as in protein cryoTEM. A major industrial partner in TEM is included, so as to secure market penetration of technological outcomes. The project avails itself of established resource and IPR management techniques. Gender balance and equal opportunities will be ensured. A comprehensive outreach and dissemination strategy is foreseen.
more_vert - CEA,STM CROLLES,MIY,DPE,FEI,CSIC,FUNDACION CIDETEC,LAM,ASML (Netherlands),MENTOR GRAPHICS DEVELOPMENT CROLLES SARL,IMEC,JSR MICRO NVFunder: European Commission Project Code: 120011
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2025 - 2028Partners:SCREEN SPE GERMANY GMBH, Robert Bosch (Germany), PICOSUN OY, SOITEC, THERMO ONIX LTD +48 partnersSCREEN SPE GERMANY GMBH,Robert Bosch (Germany),PICOSUN OY,SOITEC,THERMO ONIX LTD,Mersen (France),STMicroelectronics (Switzerland),FHG,CENTROTHERM CLEAN SOLUTIONS GMBH,University of Catania,University of Leicester,University of Malta,ICRA,Arkema (France),GASERA,MOLYMEM LIMITED,CEA,FEI,AALTO,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,AIXTRON SE,CS CLEAN SOLUTIONS GmbH,TOKYO ELECTRON EUROPE LIMITED,VARIOLYTICS GMBH,ISL,THERMO FISHER SCIENTIFIC (BREMEN) GMBH,UCC,HQ-Dielectrics (Germany),LAYERONE AS,UCL,WEEECYCLING,MERCK ELECTRONICS KGAA,Pfeiffer Vacuum (France),Polytechnic University of Milan,LEONARDO,Infineon Technologies (Germany),University of Rome Tor Vergata,NXP (Netherlands),EDWARDS LTD,SEMI Europe,IMEC,PIBOND,Pfeiffer Vacuum (Germany),STM CROLLES,ST,SINTEF AS,STMicroelectronics (Malta),SCHMIDT + HAENSCH GMBH & CO,FATH GMBH,TechnipFMC (France),Besi Netherlands BV,VOCSENS,TNOFunder: European Commission Project Code: 101194246Overall Budget: 46,626,100 EURFunder Contribution: 13,965,000 EURGENESIS, backed by Horizon Europe, aims to make semiconductor manufacturing sustainable, aligning with the European Green Deal, by minimizing environmental impact with eco-friendly innovations. [Objectives] GENESIS aims to replace harmful materials with safer options, improve waste management, and enhance the use and recyclability of scarce materials. [Innovations] GENESIS introduces innovations in three key areas: • Innovative materials: PFAS-free polymer and eco-friendly gas alternatives complying with EU regulations. • Waste & emissions monitoring: Cutting-edge sensors detect hazardous substances for efficient aqueous and gas waste elimination, reducing environmental and health risks. • Scarce material management: New integration technologies optimize material usage and initiate recycling of scarce materials like Gallium, Niobium, and silicon carbide. [Methodology] GENESIS employs four technical work packages to research sustainable material substitution, emission reduction, and resource management. This modular approach promotes scalability and integration with existing processes, fostering a circular economy in the semiconductor sector. Supervised by management work packages, it quantifies environmental efficiency and engages in dissemination to promote European technological achievements [Outcomes] The project targets a 50% cut in hazardous materials, 30% decrease in emissions and waste, and improved scarce material recyclability, boosting EU semiconductor sustainability and global competitiveness. [Impact] GENESIS supports EU's tech sovereignty and resilience through accurate monitoring and sustainable practices. It positions Europe as a leader in sustainable semiconductor tech, setting new standards for impact-oriented communication and dissemination.
more_vert Open Access Mandate for Publications assignment_turned_in Project2019 - 2023Partners:APPLIED MATERIALS BELGIUM, University of Bucharest, Sioux Technologies b.v., VDL ETG TECHNOLOGY & DEVELOPMENT BV, Pfeiffer Vacuum (France) +21 partnersAPPLIED MATERIALS BELGIUM,University of Bucharest,Sioux Technologies b.v.,VDL ETG TECHNOLOGY & DEVELOPMENT BV,Pfeiffer Vacuum (France),TU Delft,PRODRIVE BV,University of Twente,AMIL,KLA,FEI,Pfeiffer Vacuum (Germany),FHG,IMEC,KLA-Tencor MIE GmbH,REDEN,COVENTOR SARL,Solmates,Ibs (France),CARL ZEISS SMT,ASML (Netherlands),NOVA LTD,SCIA SYSTEMS GMBH,CCM,Berliner Glas KGaA Herbert Kubatz GmbH & Co.,Recif Technologies (France)Funder: European Commission Project Code: 826422Overall Budget: 119,166,000 EURFunder Contribution: 26,752,400 EURThe overall objective of the PIn3S project is to realize Pilot Integration of 3nm Semiconductor technology. This covers Process Integration, creation of Lithography Equipment, EUV Mask Repair Equipment and Metrology tools capable to deal with 3D structures, defects analysis, overlay and feature size evaluation. Each of these objectives will be achieved by cooperation between key European equipment developers like; ASML, Zeiss, Thermo Fisher, Applied Materials, Nova, KTI involved with their suppliers, involvement of a strong knowledge network based on Universities of Germany, Heidelberg University Hospital, and the Netherland, TU Delft and the University of Twente, complemented with key Technology Institutes such as imec and Fraunhofer. The project addresses Section 15 “Electronics Components & Systems Process Technology, Equipment, Materials and Manufacturing”, Major Challenge 4 “Maintaining world leadership in Semiconductor Equipment, Materials and Manufacturing solutions” and Major Challenge 1 “Developing advanced logic and memory technology for nanoscale integration and application-driven performance” of the ECSEL JU Annual Work Plan 2018. As set out in the Multi Annual Strategic Plan 2018, PIn3S addresses the ambition for the European Equipment & Manufacturing industry for advanced semiconductor technologies to lead the world in miniaturization by supplying new equipment and materials approximately two years ahead of introduction of volume production of advanced semiconductor manufacturers. With the results of the Pin3S project the consortium builds on realizing IC manufacturers to migrate to the 3nm Technology node which enables a class of new products which have more functionality, more performance and are more power efficient. As such it will form the bases for innovations yet to come enabling solutions that address the societal challenges in communication, mobility, health care, security, energy and safety & security.
more_vert Open Access Mandate for Publications assignment_turned_in Project2016 - 2019Partners:Jordan Valley Semiconductors (Israel), FEI, ATTOLIGHT SA, IMEC, DTU +12 partnersJordan Valley Semiconductors (Israel),FEI,ATTOLIGHT SA,IMEC,DTU,ADAMA INNOVATIONS LIMITED,CEA,TU/e,CAMECA,CAPRES A/S,VSG,AMIL,TNO,SEMILAB ZRT,NOVA LTD,STM CROLLES,APPLIED MATERIALS FRANCEFunder: European Commission Project Code: 692527Overall Budget: 23,055,900 EURFunder Contribution: 6,463,830 EURThe objective of the 3DAM project is to develop a new generation of metrology and characterization tools and methodologies enabling the development of the next semiconductor technology nodes. As nano-electronics technology is moving beyond the boundaries of (strained) silicon in planar or finFETs, new 3D device architectures and new materials bring major metrology and characterization challenges which cannot be met by pushing the present techniques to their limits. 3DAM will be a path-finding project which supports and complements several existing and future ECSEL pilot-line projects and is linked to the MASP area 7.1 (subsection More Moore). Innovative demonstrators and methodologies will be built and evaluated within the themes of metrology and characterization of 3D device architectures and new materials, across the full IC manufacturing cycle from Front to Back-End-Of-Line. 3D structural metrology and defect analysis techniques will be developed and correlated to address challenges around 3D CD, strain and crystal defects at the nm scale. 3D compositional analysis and electrical properties will be investigated with special attention to interfaces, alloys and 2D materials. The project will develop new workflows combining different technologies for more reliable and faster results; fit for use in future semiconductor processes. The consortium includes major European semiconductor equipment companies in the area of metrology and characterization. The link to future needs of the industry, as well as critical evaluation of concepts and demonstrators, is ensured by the participation of IMEC and LETI. The project will directly increase the competitiveness of the strong Europe-based semiconductor Equipment industry. Closely connected European IC manufacturers will benefit by accelerated R&D and process ramp-up. The project will generate technologies essential for future semiconductor processes and for the applications enabled by the new technology nodes.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
