Powered by OpenAIRE graph

Norwegian Institute for Nature Research

Norwegian Institute for Nature Research

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: BB/M026426/1
    Funder Contribution: 245,757 GBP

    The Atlantic salmon is a keystone species for natural ecosystems and human communities, but wild stocks have declined by ~90% to their lowest recorded levels. One cause of this collapse is salmon farming, the world's fastest growing form of food provision. At least 95% of Salmo salar on our planet are now reared in farms, but hundreds-of-thousands escape each year to the wild. These escapees can survive, disperse hundreds of miles, enter wild spawning populations, and ultimately reproduce. Farm fish are different to wild salmon, having been intensely domesticated since the 1970s for rapid growth and feed conversion in cages. If they reproduce with wild salmon, farm fish erode and disrupt wild-adapted gene pools, causing ecological destabilisation through loss of important locally-adapted traits like disease resistance, phenology and growth. This impact from aquaculture is described by the BBSRC-NERC call as 'the most controversial contemporary issue in Atlantic salmon farming.' Big numbers of farm fish have been found in some wild salmon spawning populations, and evidence from across the Atlantic shows that rivers near farms have had the greatest wild salmon declines, by about 50% each generation. We propose to scientifically test and verify a potential solution to the problem of farm x wild reproduction: triploid sterilisation. Triploid induction of just-fertilised fish eggs, by applying pressure to cause retention of the second set of maternal chromosomes, produces fish that are likely to be reproductive dead-ends. Triploidy is routinely applied in trout farming, to prevent stocked fish from introgressing non-native ecosystems. Although triploid fish try to spawn, gametogenesis in most species is usually disrupted and females are often sterile. However, triploid induction does not necessarily sterilise males. Detailed studies on plaice and tench reveal that triploid males produce fully motile sperm that can fertilise haploid eggs almost as effectively as sperm from diploid equivalents. It is therefore essential that triploidy is fully verified in both sexes of a species, including under sperm competition, before we can be confident that triploid males pose no reproductive threat to wild salmon spawning populations. Even if triploids cannot produce viable offspring, large numbers of escapes could impact on wild fish by 'occupying' eggs and sterilising the reproductive potential of wild females. We will therefore fully evaluate the reproductive function of triploid farm Atlantic salmon, thereby proving biosecurity. We know that male triploid salmon show normal breeding behaviour, can induce females to spawn, and release milt. However, information on the fertilisation and reproductive potential of triploid salmon is lacking. The only scientific study of triploid adult Atlantic salmon reproduction examined just a single male, showing that it was fertile but its offspring had poor survival. We will therefore conduct detailed scientific trials on triploid male fertility, using established techniques that measure sperm and egg performance in a range of relevant conditions to assay triploid reproductive function. We will trial the performance of triploid males in sperm competitions (both in vitro and between competing males), because the salmon mating pattern is naturally promiscuous. Our experiments will generate meaningful results that will allow a full and detailed assessment of the reproductive impact of triploid farm salmon when they escape into wild spawning populations. The salmon farming industry is now in a position to embrace triploidy, since research reveals that triploids can perform as well as diploids under the right farm and diet conditions. Triploid salmon are just starting market trials, so our project is perfectly timed to assess this solution to farm x wild introgression. We will ensure that our research achieves impact, by disseminating findings to the public, policy-makers, NGOs, and salmon farmers.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X010384/1
    Funder Contribution: 90,892 GBP

    Understanding the global biodiversity crisis requires regular monitoring and reporting. Scientists use a combination of biodiversity data and statistical methods for this purpose. Biodiversity data, however, are not often representative samples of reality. Other research areas have been dealing with similar issues for many years, such as when political scientists try to predict election outcomes from unrepresentative public polling. Accounting for such evidence quality issues is an essential part of the maturation of the use of "big data" in ecology, particularly as research outputs are increasingly being called upon to evaluate both international targets (e.g. those linked to the Convention on Biological Diversity) and national government policies. For example, the forthcoming UK Environment Act is planning to use ecological indicators to both set, and evaluate progress towards, targets relating to the state of the environment. Whilst such indicators have long been used as "official statistics" to inform government, this direct link to legislation is new. Given all the subsequent decisions that this usage might entail (e.g. funding for conservation), accurate appraisals of our environment, including adjustments for unrepresentative sampling, are clearly essential. At the same time, the growth of digital communication and IT has created opportunities to visualise and disseminate patterns in data like never before. Even within the recent past the COVID pandemic has increased the rate at which the public are presented with charts and data. Parallel to this, there has been a steady growth in public interest in the environment, with organisations such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) and environmental charities now keen to summarise and present the "state of nature" to the public to bolster their understanding of ecological issues. Trends in quantities that are considered to indicate the health of some part of our environment are a significant part of this, and are regularly published, promoted, and extensively shared. Such trends are often used as "ecological indicators", i.e. numbers that directly indicate some change in our environment that we wish to manage or simply understand, an area with a long history of research in ecology. Communicating uncertainty around such metrics is a fundamental part of keeping the public informed about the true state of scientists' knowledge about biodiversity change. What is not often considered, however, is the quality of the evidence used to create such statistics. In the UK, most biodiversity indicators are based on amateur naturalist activity, which, whilst frequently of very high quality, is not often the result of random sampling. Globally, data are highly heterogeneous, and even professional monitoring data become unrepresentative at this scale (i.e. there is no overall random sample of earth's biodiversity). However, the robust estimation of time trends in species' distributions or abundances requires representative data. This is ultimately a statistical problem, common to all sciences that wish to understand reality from samples. Random samples are at the heart of strong statistical inference, and so departures from this condition should give us pause for thought. Luckily, statisticians have put much effort into considering how nonrandom samples can be made more reliable, and a rich collection of advice and technical methods from other research areas is available to this end. Our project will investigate this set of techniques to highlight ways in which the ecological evidence base underpinning our knowledge of the current biodiversity crisis can be improved, and how this uncertainty can be accurately and clearly communicated to policymakers and the public.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/M026671/1
    Funder Contribution: 241,275 GBP

    Controversy surrounds the actual impacts of Atlantic salmon farming on wild salmonid stocks, fed by the lack of direct evidence for or against many potential impacts, with uncertainty an increasing impediment to sustainable industry development and effective management of wild stocks. This applies to the potential impact of the introgression of farm genomes into locally adapted wild populations from breeding of farm escapes. Escapes do occur and are recognized as inevitable, but are a very small fraction of farm stocks and vary in numbers both locally and temporally. The majority of escapees are expected to die without breeding but some do remain in or ascend rivers and spawn. However, a detailed understanding of actual levels of interbreeding and introgression in most rivers is lacking which, along with an understanding of the adaptive differentiation of farm and wild salmon, is required to establish the actual impact of this potential interaction on the productivity and viability of wild populations. Detection and quantification of interbreeding and introgression requires diagnostic markers for farm and wild genomes. Genetic differentiation of farm and wild genomes can evolve through founder effects, selective breeding and domestication selection and is observed in respect of a variety of molecular markers. However, existing molecular markers are not fully diagnostic and regionally constrained in their usefulness. Unfortunately, marker panels screened for useful variation have been small and arbitrary such that they are unlikely to include the most informative loci and to be context specific, limiting their power and transferability. To properly address the issue of introgression molecular markers are required that are highly diagnostic across all farm and wild populations. These markers will be in genomic regions involved in domestication and controlling the expression of selected economic traits. What is known of the genomic architecture of domestication and most economic traits indicates their control is polygenic, making the targeting of specific gene regions in the search for markers difficult. In contrast, recent advances in genomics make possible genome scanning and genome-wide association studies (GWAS) which can provide a high resolution assessment of molecular differentiation between different individuals or populations across the genome. Different GWAS strategies can be employed but two are deemed optimal in the current context. Firstly, a GWAS will be carried out using a new Atlantic salmon SNP (single nucleotide polymorphism) containing 930k nuclear SNPs, recently developed in collaboration with the salmon farming industry. This will be carried out on a broad base of representative farm and wild stocks. Secondly, GWAS will be carried out to identify temporally stable epigenetic DNA-methylation base changes induced by rearing fish in culture by comparing groups of single source wild fish reared in the wild and in culture. The study will deliver the first general understanding of domestication related molecular genetic differentiation between farmed and wild salmon and identify the best markers for identifying farm salmon in the wild and assessing genetic introgression of farm genes into wild populations. The work will deliver a more robust and generally applicable tool for determining the actual levels of escapes and introgression in wild salmon populations. Following field calibration and independent validation, the diagnostic methodology defined in the study is expected to provide the basis for generating the evidence needed to clarify the debate on levels of escapes and introgression and the long term impacts of introgression on population viability. This will help to define more clearly the path forward for the sustainable development of the salmon farming industry in the UK and elsewhere in the North Atlantic region and help to inform management priorities for wild Atlantic salmon stocks.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X003973/1
    Funder Contribution: 512,835 GBP

    Wild deer populations have increased dramatically throughout the northern hemisphere during recent decades. The UK is home to six deer species that can substantially impact the natural systems that we all depend upon. Capable of rapidly colonising newly created woodlands, deer can inhibit growth by browsing young trees, saplings, and seedlings. Consequently, deer present a serious challenge to the government's ambitious target to increase woodland area from 13% to 18% of UK land area and achieve net zero by 2050. It is therefore essential that people involved in woodland management plan for deer impacts. Whilst managing deer populations and designing planting schemes to mitigate their impacts is more important than ever, managing deer is challenging. They are highly mobile animals that cross man-made boundaries, and their local foraging decisions are driven by environmental characteristics of the broader landscape. Consequently, local management actions on a single property can elicit effects that cascade across entire landscapes and influence deer impacts on land elsewhere. For example, fencing a woodland might displace deer to neighbouring farmland, or planting trees locally will alter woodland cover and configuration at the landscape scale, influencing deer movement and impacts elsewhere. Rural landscapes across England and Wales are comprised of patchworks of land uses and landowners with varying and even conflicting management objectives, including different views on deer. Indeed, while considered a 'pest' to many landowners, deer are culturally and economically valued by others. In such situations, woodland creation and management decisions that influence deer behaviour and foraging preferences are necessary to ensure successful woodland expansion. These decisions could include, for example, where to locate new woodlands, fencing, alterations to woodland tree species and structure, or the provision of alternative food resources or deer repellents. However, landowners may not be aware of these options, their effectiveness, or the scientific evidence behind them. Indeed, while scientific understanding of deer ecology, impacts and mitigation is evidenced by a vast literature from across the temperate zone, much remains to be done to translate this knowledge into management practice, in a way that integrates local expertise and multiple stakeholder objectives. Project iDeer has been designed to address this incorporation and implementation gap. Project iDeer will deliver a co-designed interactive decision support tool - the 'iDeer tool' - to facilitate strategic woodland creation and management that minimises deer impacts on new and existing woodland and other neighbouring land uses in England and Wales. Landowner consultations from previous projects have established a clear desire for digital decision support tools that integrate local with scientific knowledge to inform land management plans. The iDeer tool will output 'risk maps' that enable users to see how choices in woodland management made by one landowner will influence deer activity on neighbouring land and the wider landscape. For example, how the creation and fencing of one hectare of woodland on one land parcel might increase crop disturbance by deer on the neighbouring land parcel. Users will be able to output and compare these risk maps enabling them to make informed decisions about how to manage their land whilst also considering impacts on neighbours and the wider landscape. We propose to bring together an interdisciplinary team with collective expertise in woodland and deer ecology, conservation conflict, animal behaviour modelling, social science methods and web tool development. Solutions-focussed from the start, we will work with stakeholders that are involved in woodland and/or deer management, including farmers, woodland managers, public forestry bodies, and conservation practitioners, to ensure that the iDeer tool will achieve its aim.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.