European Synch Radiation Facility - ESRF
European Synch Radiation Facility - ESRF
32 Projects, page 1 of 7
assignment_turned_in Project2013 - 2018Partners:UCL, European Synch Radiation Facility - ESRF, European Synch Radiation Facility - ESRF, UHasseltUCL,European Synch Radiation Facility - ESRF,European Synch Radiation Facility - ESRF,UHasseltFunder: UK Research and Innovation Project Code: EP/K007467/1Funder Contribution: 1,120,080 GBPSupported heterogeneous catalysts comprising nano-sized metals/metal oxides such as Cr, Ni, Co, Au, Pd, Pt and Ag dispersed on an oxide support (i.e. SiO2/Al2O3), play a central role in an industry estimated to be worth ca. 1500 billion $US/annum. They are the principle protagonists in the conversion of fractions from natural oil and gas to produce, via core catalytic processes (i.e. polymerisation, isomerisation, reduction and oxidation), a wide variety of chemicals for everyday use. A combination of dwindling supply and increasing demand on these feedstocks means it is vital that catalysts and catalytic processes operate as efficiently as possible. Optimal efficiency is normally achieved by rationalisation of structure with function and forms the basis for much catalysis research. However the characterisation performed is often incomplete and rarely performed under reaction conditions leading to contrasting conclusions as to what makes a catalyst active. This project will develop more robust structure-activity relationships by correlating how parameters that influence catalyst performance i.e. nanoparticle size, shape, redox functionality and metal-support interactions, affect and evolve in core catalytic processes of hydrogenation and oxidation. The project adopts a novel approach drawing on skills in catalyst preparation and in situ catalyst characterisation to prepare size-controlled monometallic nanoparticles, deposited on a flat oxide supports and to characterise them in operando using simultaneous time-resolved grazing incidence X-ray scattering (GIXRS) techniques. In particular small angle/wide angle grazing incidence scattering methods (GISAXS/GIWAXS) will be used although attempts will also be made to extract pair distribution function ((GI)PDF) from the data to enable a more complete characterisation of the catalyst. Such a thorough characterisation has never been previously employed and will be used to determine the salient characteristics of catalytic nanoparticles in both two-phase (hydrogenation) and three-phase (oxidation) catalytic systems. It is expected that these measurements will prove invaluable for understanding what makes a supported nanoparticle tick and an important basis for future catalyst optimisation and design.
more_vert assignment_turned_in Project2014 - 2015Partners:Syngenta, University of York, Aston University, DSM Research (The Netherlands), University of York +8 partnersSyngenta,University of York,Aston University,DSM Research (The Netherlands),University of York,BP British Petroleum,BP Alternative Energy,Syngenta,European Synch Radiation Facility - ESRF,European Synch Radiation Facility - ESRF,BP Chemicals Ltd,DSM Research (The Netherlands),Aston UniversityFunder: UK Research and Innovation Project Code: EP/G007594/4Funder Contribution: 57,236 GBPCatalysis lies at the heart of life on earth, powers our homes and puts food on our tables. However to a large degree our ability to transform individual atoms and molecules into new pharmaceutical medicines, fuels, and fertilisers has depended upon an equal combination of brilliant science and serendipitous discoveries. This reflects the complex interactions between reacting molecules and products, their surrounding environment, and of course the catalyst itself, which ideally remains unchanged over thousands of reaction cycles. Recent advances in chemical synthesis and analysis now offer an unprecedented opportunity to sculpt the atomic structure of solid catalysts and to peer inside their microscopic workings.Over the next five years, I propose to integrate these new experimental and theoretical breakthroughs with my own expertise in catalyst design and testing, to develop a new generation of nanoengineered materials for the clean production of valuable chemical feedstocks and sustainable biofuels. New collaborations, forged with world leaders in the areas of inorganic solid-state chemistry, nanoscale imaging and computer modelling, will help me to develop the multidisciplinary skillsets needed to achieve my vision of solid catalysts, tailored 'on demand', for efficient clean technologies that will benefit society over the coming decade.
more_vert assignment_turned_in Project2008 - 2009Partners:University of Manchester, Diamond Light Source, European Synch Radiation Facility - ESRF, Diamond Light Source, University of Salford +4 partnersUniversity of Manchester,Diamond Light Source,European Synch Radiation Facility - ESRF,Diamond Light Source,University of Salford,Instrument Design Technology Ltd,The University of Manchester,European Synch Radiation Facility - ESRF,Instrument Design Technology (United Kingdom)Funder: UK Research and Innovation Project Code: EP/E032605/2Our proposal concerns the development of a world-leading instrument that will characterise more effectively and efficiently than ever before the intense highly collimated X-ray beams produced at Synchrotron Radiation (SR) facilities. The device will combine high-speed performance with extremely sensitive beam position measurement and beam imaging capabilities. For the first time, one instrument will provide a comprehensive set of X-ray beam characteristics: focal size, position, intensity distribution and energy (wavelength). Uniquely for the X-ray region, these measurements can be performed during an experiment: it will be an in situ - but virtually transparent - device, the product of state-of-the-art detector and signal processing technology. The high temporal resolution of the proposed device will enable the fast detection of beam defocus, vibration, shift and intensity fluctuations. Crucially this capability will be augmented by the possibility of feedback of the output signals into the surrounding optical infrastructure to facilitate correction of any beam motion or indeed accurate tracking across a target to perform a two-dimensional scan.In brief, our world-class system will exhibit several innovative features that will significantly improve the accuracy, reliability and scope of data acquired using micrometer-sized X-ray beams. Looking at the wider community of scientists using synchrotron radiation, it should be stressed that the underlying technology of this cutting-edge device is transferable. It will benefit all scientific experiments conducted at all SR facilities, irrespective of their methodology or wavelength range utilised. For example, in imaging experiments, it will lead to sharper images: any blurring and anomalies due to uneven illumination can be removed. In all experiments, energy shifts in the beam impinging on the sample due to angular drift of the beam entering the monochromator may be eliminated. In X-ray diffraction and scattering, intensities may be recorded on an absolute scale doing away with the ubiquitous scale factor and corrections between successive individual measurements taken with varying beam intensities. Experiments in the domain of microscopic imaging and spectroscopy that require the maintenance of a steady incident flux of a highly collimated beam of a microscopic target area provide a challenge for which the new technology is particularly suitable, especially if, as is often the case, a wavelength scan is also required. As examples of nascent fields that would benefit, we cite the study of biological species using fluorescence tomography and microspectrometry.The topicality of the proposed project and general level of interest in the area is indicated by the exponential increase in published research on X-ray beam position monitoring in recent years. Our approach is original and superior to existing solutions, extending the performance envelope of existing in situ beam monitors that monitor beam position alone. Our multidisciplinary research team has already demonstrated the potential of the technology in two successful proof-of-concept experiments [1-3; part 1]. Furthermore, we have dedicated academic and industrial partners on board who are committed to helping us to develop and enable take up of this novel technology.
more_vert assignment_turned_in Project2016 - 2022Partners:Deutsche Elektronen Synchrotron, UCL, IFW Desden, Diamond Light Source, European Synch Radiation Facility - ESRF +5 partnersDeutsche Elektronen Synchrotron,UCL,IFW Desden,Diamond Light Source,European Synch Radiation Facility - ESRF,European Synch Radiation Facility - ESRF,IFW Desden,Diamond Light Source,German Elektronen Synchrotron (DESY),IFW Dresden (Leibniz Institute)Funder: UK Research and Innovation Project Code: EP/N027671/1Funder Contribution: 1,210,990 GBPAlthough it is one of the most prosaic properties of a material, the response to an applied electrical voltage can be one of its most profound. Initial insight into why some materials are electrical conductors while others are insulators came from the early application of quantum mechanics. In this view, electrons in "simple" materials are treated as independent, and solids are classified according to the number of electrons filling the quantum states: for an even number the states are filled, resulting in an insulator, whereas for an odd number the states are partly filled allowing the electrons to conduct. Although this rule of thumb works for many "simple" materials, including e.g. aluminum and silicon on which a large fraction of our current technologies are based, it fails spectacularly for others. Simple oxides of transition metals, for example, exist with partially filled electron states. Mott first proposed that it was only by including electron interactions, which in materials such as oxides can be dominant, that the metal-insulator transition can be understood. Hubbard later proposed a deceptively simple model with just two parameters, describing the tendency of electrons either to localize (insulating behaviour) or delocalize (metallic). For more than 50 years, the Mott-Hubbard paradigm has provided the abiding theoretical framework for rationalizing the electronic and magnetic properties of "complex" quantum solids defined as those that exhibit explicit collective quantum effects, such as high-temperature superconductivity. More recently, the relativistic coupling of an electron's intrinsic spin with its orbital motion - the spin-orbit interaction (SOI) - has come sharply into focus with the discovery that it can lead to qualitatively new types of electronic state. It has been shown that even for certain "simple" materials the SOI leads to surface metallic states on materials that in the bulk are insulating. These surface states are non-trivial, in that they are protected by symmetries - or topology - and therefore cannot be easily destroyed. The question then naturally arises as to the consequences of including relativistic effects in "complex" quantum materials in which the electrons interact strongly. The answer requires developing a new paradigm - beyond the Mott-Hubbard one - that treats interactions and the SOI on an equal footing. This proposal is to perform experiments that will be key to establishing this new paradigm. This new frontier has attracted considerable theoretical attention, and a plethora of predictions have been made for exotic electronic and magnetic states, some of which in the long run may lead to new technologies. Examples include novel types of insulators, metals, superconductors, quantum spin liquids, etc. However, history shows that although theory provides a useful guide, it cannot anticipate all possibilities, and many exciting discoveries will no doubt be made through experimentation. Revealing the nature of the electronic and magnetic correlations in complex "quantum matter" through experimentation is very challenging, requiring techniques with extremely high sensitivity and specificity. A major theme of this proposal is the development of novel X-ray techniques which will offer unprecedented insights into the atomic scale order and excitations in solids. The techniques will be developed at large-scale central facilities, both nationally and internationally, which have dedicated particle accelerators for producing ultra intense X-ray beams. The recent advent of X-ray laser sources represent the pinnacle of this technology which deliver 20 orders of magnitude higher intensity than conventional sources in femto-second pulses (i.e. the time taken for light to transit a molecule). These sources are transformational enabling novel non-equilibrium electronic and magnetic states to be created and their evolution to be studied in real-time.
more_vert assignment_turned_in Project2019 - 2027Partners:European Synch Radiation Facility - ESRF, Helmholtz Association, Centre for Process Innovation (Dup'e), NanoTemper, Reprocell-Europe +47 partnersEuropean Synch Radiation Facility - ESRF,Helmholtz Association,Centre for Process Innovation (Dup'e),NanoTemper,Reprocell-Europe,Astex,Concept Life Sciences (United Kingdom),Max iv,Cambridge Crystallographic Data Centre,South Tees Hospitals NHS Foundtn Trust,Reprocell-Europe,NanoTemper,Universidade de Sao Paulo,CRB,Bruker Daltonik GmbH,Bionow Ltd,CPI Ltd,Newcastle University,LightOx Ltd,Bruker Daltonik GmbH,European Synch Radiation Facility - ESRF,Boehringer Ingelheim Pharma,Newcastle University,Diamond Light Source,High Force Research Ltd,Bionow Ltd,South Tees Hospitals NHS Foundtn Trust,University of Sao Paolo,Diamond Light Source,University of Sao Paulo,GlaxoSmithKline (Harlow),Cambridge Research Biochemicals,High Force Research Ltd,Centre for Process Innovation,Darlington,Max iv,LightOx Ltd,Helmholtz Association of German Research Centres,Arc Trinova Ltd (Arcinova),ALMAC SCIENCES,Glythera Ltd,GlaxoSmithKline PLC,Lund University,Boehringer Ingelheim (International),Concept Life Sciences,Arcinova,Boehringer Ingelheim Pharma,Concept Life Sciences,Almac Group Ltd,CCDC,GSK,Astex,GlytheraFunder: UK Research and Innovation Project Code: EP/S022791/1Funder Contribution: 7,571,970 GBPMolecular sciences, such as chemistry, biophysics, molecular biology and protein science, are vital to innovations in medicine and the discovery of new medicines and diagnostics. As well as making a crucial contribution to health and society, industries in this field provide an essential component to the economy and contribute hugely to employment figures, currently generating nearly 500,000 jobs nationally. To enable and facilitate future economic growth in this area, the CDT will provide a cohort of researchers who have training in both aspects of this interface who will be equipped to become the future innovators and leaders in their field. All projects will be based in both molecular and medical sciences and will focus on unmet medical needs, such as understanding of disease biology, identification of new therapeutic targets, and new approaches to discovery and development of novel therapies. Specific problems will be identified by researchers within the CDT, industrial partners, stakeholders and the CDT students. The research will be structured around three theme areas: Biology of Disease, Molecule and Assay Design and Structural Biology and Computation. The CDT brings together leading researchers with a proven track record across these areas and who have pioneered recent advances in the field, such as multiple approved cancer treatments. Their combined expertise will provide supervision and mentorship to the student cohort who will work on projects that span these research themes and bring their contributions to bear on the medical problems in question. The student cohort approach will allow teams of researchers to work together on joint projects with common goals. Projects will be proposed between academics, industrial partners and students with priority given to those with industrial relevance. The programme of research and training across the disciplines will equip graduates of the CDT with an unprecedented background of knowledge and skills across the disciplines. The programme of research and training across the disciplines will be supplemented by training and hands-on experiences of entrepreneurship, responsible innovation and project management. Taken together this will make graduates of the CDT highly desirable to employers, equip them with the skills they need to envisage and implement future innovations in the area and allow them to become the leaders of tomorrow. A structured and highly experienced management group, consisting of a director, co-directors, theme leads and training coordinators will oversee the execution of the CDT with the full involvement of industry partners and students. This will ensure delivery of the cohort training programme and joint events as well as being accountable for the process of selection of projects and student recruitment. The management team has an established track record of delivery of research and training in the field across industry and academia as well as scientific leadership and network training coordination. The CDT will be delivered as a single, fully integrated programme between Newcastle and Durham Universities, bringing together highly complementary skills and backgrounds from the two institutions. The seamless delivery of the programme across the two institutions is enabled by their unique connectivity with efficient transport links and established regional networks. The concept and structure of the CDT has been developed in conjunction with the industrial partners across the pharmaceutical, biotech and contract research industries, who have given vital steer on the desirability and training need for a CDT in this area as well as to the nature of the theme areas and focus of research. EPSRC funding for the CDT will be supplemented by substantial contributions from both Universities with resources and studentship funding and from industry partners who will provide training, in kind contribution and placements as well as additional studentships.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
