Corus UK
Corus UK
16 Projects, page 1 of 4
assignment_turned_in Project2009 - 2018Partners:University of Sheffield, Cummins Turbo Technologies, National Nuclear Laboratory (NNL), NNL, Cummins (United Kingdom) +29 partnersUniversity of Sheffield,Cummins Turbo Technologies,National Nuclear Laboratory (NNL),NNL,Cummins (United Kingdom),Tata Steel (United Kingdom),WESTINGHOUSE ELECTRIC COMPANY UK LIMITED,University of Sheffield,TISCO,Defence Science & Tech Lab DSTL,Luxfer Group (United Kingdom),BP Exploration Operating Company Ltd,Corus UK,Tata Steel (United Kingdom),MEL Chemicals,Magnesium Elektron Ltd (UK),[no title available],Alcoa Europe Flat Rolled Products,Westinghouse Electric Company UK Limited,DSTL,Capcis Ltd,Cummins (United States),TIMET UK LIMITED,Capcis Ltd,Firth Rixson Limited,Novelis Global Technology Centre (NGTC),BP British Petroleum,Cummins (United Kingdom),Timet UK Ltd,Alcoa Europe Flat Rolled Products,Firth Rixson Limited,BP EXPLORATION OPERATING COMPANY LIMITED,Novelis Global Technology Centre,Defence Science & Tech Lab DSTLFunder: UK Research and Innovation Project Code: EP/G036950/1Funder Contribution: 6,371,160 GBPThis is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.
more_vert assignment_turned_in Project2009 - 2012Partners:TATA Motors Engineering Technical Centre, Meridian Business Development UK, TISCO, Novelis Global Technology Centre (NGTC), Sonobond +14 partnersTATA Motors Engineering Technical Centre,Meridian Business Development UK,TISCO,Novelis Global Technology Centre (NGTC),Sonobond,University of Salford,University of Manchester,Sonobond,The University of Manchester,Tata Steel (United Kingdom),Corus UK,JAGUAR LAND ROVER,Meridian Lightweight Technologies UK Ltd,Jaguar Land Rover (United Kingdom),Novelis Global Technology Centre,Airbus,Tata Steel (United Kingdom),Airbus (United Kingdom),AIRBUS OPERATIONS LIMITEDFunder: UK Research and Innovation Project Code: EP/G022402/1Funder Contribution: 406,440 GBPThere are clear drivers in the transport industry towards lower fuel consumption and CO2 emissions through the introduction of designs involving combinations of different material classes, such as steel, titanium, magnesium and aluminium alloys, metal sheet and castings, and laminates in more efficient hybrid structures. The future direction of the transport industry will thus undoubtedly be based on multi-material solutions. This shift in design philosophy is already past the embryonic stage, with the introduction of aluminium front end steel body shells (BMW 5 series) and the integration of aluminium sheet and magnesium high pressure die castings in aluminium car bodies (e.g. Jaguar XK).Such material combinations are currently joined by fasteners, which are expensive and inefficient, as they are very difficult to weld by conventional technologies like electrical resistance spot, MIG arc, and laser welding. New advanced solid state friction based welding techniques can potentially overcome many of the issues associated with joining dissimilar material combinations, as they lower the overall heat input and do not melt the materials. This greatly reduces the tendency for poor bond strengths, due to interfacial reaction and solidification cracking, as well as damage to thermally sensitive materials like laminates and aluminium alloys used in automotive bodies, which are designed to harden during paint baking. Friction joining techniques are also far more efficient, resulting in energy savings of > 90% relative to resistance spot and laser welding, are more robust processes, and can be readily used in combination with adhesive bonding.This project, in close collaboration with industry (e.g. Jaguar - Land Rover, Airbus, Corus, Meridian, Novelis, TWI, Sonobond) will investigate materials and process issues associated with optimising friction joining of hybrid, more mass efficient structures, focusing on; Friction Stir, Friction Stir Spot, and High Power Ultrasonic Spot welding. The work will be underpinned by novel approaches to developing models of these exciting new processes and detailed analysis and modelling of key material interactions, such as interfacial bonding / reaction and weld microstructure formation.
more_vert assignment_turned_in Project2010 - 2012Partners:Home Office Science, Teledyne e2v (UK) Ltd, AWE Aldermaston, Tata Steel (United Kingdom), TECHNODYNE INTERNATIONAL LIMITED +17 partnersHome Office Science,Teledyne e2v (UK) Ltd,AWE Aldermaston,Tata Steel (United Kingdom),TECHNODYNE INTERNATIONAL LIMITED,Lablogic Systems Limited,Home Office Science,[no title available],ET Enterprises Limited,Corus UK,Qioptiq Ltd,University of Sheffield,E2V Technologies,Lablogic Systems (United Kingdom),University of Oxford,TISCO,University of Sheffield,ET Enterprises Limited,e2v technologies plc,QinetiQ,Technodyne International Ltd,AWEFunder: UK Research and Innovation Project Code: ST/H000917/2Funder Contribution: 6,573,860 GBPOur research with the particle physics rolling grant at Sheffield attempts to progress understanding of some of the most important questions concerning the origins and make-up of the Universe. One of these big questions is to understand what gives fundamental particles their mass. Part of our work on the huge ATLAS experiment at the Large Hadron Collider (LHC) at CERN in Geneva is aimed at this question, in particular to see if the famous Higgs Boson particle exists. The best theories we have to explain particle mass predict that it should be there. We will play a key role in analysing the vast amount of data soon expected to make this exciting discovery. Another search at ATLAS will be to determine if the so-called supersymmetry (SUSY) theory is correct. This is our best prospect for understanding how particles interact at high energy and itself predicts a new class of particles. The concept states that for every known fundamental particle there exists a super-partner particle. We worked for many years developing the key silicon technology now installed in ATLAS to search for these particles. Now we are ready with our software to play a key role in analysing the data that will hopefully discover that they exist. One of the implications of SUSY theory is the likelihood that the most stable new particle, the so-called lightest supersymmetric particle (LSP), probably is very abundant throughout the Universe, making up about 25% of its mass. This would easily explain one of the big mysteries in physics, the so-called Dark Matter seen by astronomers from its gravitational effects on stars and galaxies. Our group has pioneered techniques to search directly for dark matter particles in the laboratory and is participating in a new multi-national venture, EURECA. This will build a tonne-sized device using low temperature superconductors to perform a new search. We will contribute to the key aspect of how to shield the experiment from natural background particles, like muons. Another mystery in the Universe are the strange properties of its most abundant particle, the neutrino. This has only recently been found to have a small mass and to readily change form between three different 'flavours' while propagating through space. Details of this are not fully understood but it is known that if properly unravelled it might answer another big question, why there is so little anti-matter in the Universe. We are working on these questions through participation in the big international T2K neutrino beam experiments in Japan. We are building a key component of the detectors and will, within two years, start to analyse the data to unravel these issues. T2K probably will not do a full job, so we have instigated in the UK work on a new neutrino detector concept, based on liquid argon, contributing to the FJNE programme. We plan to build test devices to enable the next generation of neutrino experiments to follow T2K. This is linked also to our work on accelerator technology, MICE, where we are building test beam targets. This is a vital step towards the ultimate facility, a neutrino factory. We are working on key technology for this within the UKNF project. Finally, much of the hardware and computer code developed for these fundamental studies have great relevance well outside our main research. There are many examples, involving projects with a dozen UK companies. For instance, our work with Corus Ltd. on new techniques for neutron detection, has allowed development of new monitors to detect illicit transport of nuclear materials at ports. This will continue now and broaden into medical applications. Our dark matter work has produced a new national facility for underground science, the Boulby laboratory. Here we have started a new project on climate change, SKY, to explore the effect of comic rays on cloud formation.
more_vert assignment_turned_in Project2011 - 2017Partners:Repregen, Innoval Technology Ltd, University of Manchester, Cambridge Integrated Knowledge Centre, Tata Steel (United Kingdom) +32 partnersRepregen,Innoval Technology Ltd,University of Manchester,Cambridge Integrated Knowledge Centre,Tata Steel (United Kingdom),Corus UK,JM,TISCO,INNOVAL,Stryker Orthopaedics,Oxsensis1,FORD MOTOR COMPANY LIMITED,CERES POWER LIMITED,Johnson Matthey Technology Centre,Ford Motor Company,University of Cambridge,ORTEQ,The Electrospinning Company,Rolls-Royce (United Kingdom),UNIVERSITY OF CAMBRIDGE,Thomas Swan and Co Ltd,Rolls-Royce Plc (UK),TECL,SWAN,The University of Manchester,QUANTUM DETECTORS LIMITED,University of Salford,Rolls-Royce (United Kingdom),Repregen,Stryker Orthopaedics,University of Oxford,Quantum Detectors,Oxsensis,Tata Steel (United Kingdom),Ceres Power Ltd,ORTEQ,Johnson Matthey plcFunder: UK Research and Innovation Project Code: EP/I02249X/1Funder Contribution: 1,656,510 GBPTaken together the imaging Facilities on the Rutherford Campus will be without equal anywhere in the world. The suite of synchrotron X-ray, neutron, laser, electron, lab. X-ray, and NMR imaging available promises an unprecedented opportunity to obtain information about material structure and behaviour. This infrastructure provides an opportunity to undertake science changing experiments. We need to be able to bring together the insights from different instruments to follow structural evolution under realistic environments and timescales to go beyond static 3D images by radically increasing the dimensionality of information available. This project will use many beamlines at Diamond and ISIS, combining them with laser and electron imaging capability on site, but especially exploiting the 3.3M investment by Manchester into a new imaging beamline at Diamond that will complete in Spring 2012.Traditionally a 3D images are reconstructed from hundreds or thousands of 2D images (projections) taken as the object is rotated. This project will:1) Deliver 3D movies of materials behaviour. 2) Move from essentially black and white images to colour images that reveal the elements inside the material and their chemical state which will be really useful for studying fuel cells and batteries.3) Create multidimensional images by combining more than one method (e.g. lasers and x-rays) to create an image. Each method is sensitive to different aspects.4) Establish an In situ Environments Lab and a Tissue Regeneration lab at the Research Complex. The former so that we can study sample behaviour in real time on the beam line; the latter so that we can study the cell growth and regeneration on new biomaterials. A key capability if we are to develop more effective hard (e.g. artificial hip) and soft tissue (artificial cartilage) replacements.These new methods will provide more detail about a very wide range of behaviours, but we will focus our experiments on materials for Energy and Biomaterials. In the area of energy it will enable us to:Recreate the conditions operating inside a hydrogen fuel cell (1000C) to find out how they degrade in operation leading to better fuel cells for cars and other applicationsStudy the charging and discharging of Li batteries to understand better why their performance degrades over their lifetime.Study thermal barriers that protect turbine blades from the aggressive environments inside an aeroengine to develop more efficient engines.Study the sub-surface corrosion of aircraft alloys and nuclear pressure vessels under realistic conditions improving safetyStudy in 3D how oil is removed from the pores in rocks and how we might more efficiently store harmful CO2in rocks.In the area of biomaterials it will enable us to recreate the conditions under which cells attach to new biomaterials and to follow their attachment and regeneration using a combination of imaging methods (laser, electron and x-ray) leading to:Porous hard tissue replacements (bone analogues) made from bio-active glasses with a microstructure to encourage cell attachmentSoft fibrous tissue replacements for skin, cartilage, tendon. These will involve sub-micron fibres arranged in ropes and mats.Of course the benefits of the multi-dimensional imaging we will establish at Harwell will extend much further. It will provide other academics and industry from across the UK with information across time and lengthscales not currently available. This will have a dramatic effect on our capability to follow behaviour during processing and in service.
more_vert assignment_turned_in Project2009 - 2011Partners:University of Sheffield, KBR (United Kingdom), VERTELLUS SPECIALTIES UK LIMITED, Pfizer Global R and D, Veolia ES Sheffield Ltd +22 partnersUniversity of Sheffield,KBR (United Kingdom),VERTELLUS SPECIALTIES UK LIMITED,Pfizer Global R and D,Veolia ES Sheffield Ltd,Vertellus Specialties (United Kingdom),TISCO,M W Kellog,BP Chemicals,BP Exploration Operating Company Ltd,NEPIC,University of Sheffield,Veolia ES Sheffield Ltd,Alstom Ltd (UK),Corus UK,Tata Steel (United Kingdom),Alstom (United Kingdom),E ON Engineering Ltd,[no title available],Pfizer (United Kingdom),North East Process Industry ClusterNEPIC,Pfizer Global R and D,Alstom Power UK Ltd,Tata Steel (United Kingdom),M W Kellog,B P International Ltd,E.On UK PlcFunder: UK Research and Innovation Project Code: EP/G057133/1Funder Contribution: 330,996 GBPThis research project addresses the process industry contribution to the UK government goals of tackling climate change and reducing dependence on imported fuel. This programme fills these nationally important objectives by investigating the short, medium and long-term provision of energy for the UK, based on thermal technologies that exploit low grade process heat that is currently not recovered by this industry. The results of this 'Whole Systems Analysis research will improve plant efficiency and displace a significant fraction of fossil fuel use, thus reducing UK carbon dioxide emissions, by using techniques that are secure, clean, affordable and socially welcome. This research involves collaboration between several highly relevant industrial partners (e.g. Corus Ltd, North East Process Industry Cluster (NEPIC) Ltd, EON UK, Veolia (Sheffield Heat & Power Ltd), Pfizer Ltd, etc) and four internationally leading academic centres of excellence (Universities of Sheffield, Newcastle, Manchester & Tyndall Centre). The research programme targets a national problem by exploiting their complementary expertise through Whole Systems Analysis . Thus the objective of this research proposal is to investigate new and appropriate technologies and strategies needed for industry to exploit the large amount of unused low grade heat available. This will be achieved by providing a systematic procedure based on a comprehensive analysis of all aspects of process viability that will enable industry to optimise the management and exploitation of their thermal energy. This detailed procedure will be backed up by a sustained channel of communication between the relevant industrial and academic parties. This multidisciplinary work is thus applicable both to existing plants and the design of future plants. Please note that the establishment of an associated but separately funded EPSRC Network (e.g. PRO-TEM) is considered to be an integral part of this project, in order to satisfy the implicit role of technology transfer in both directions, between the process industry and the wider academic community. It will also provide access to industrial players who will provide essential case studies for the technical and socio-economic work. The case for an associated PRO-TEM Network is briefly discussed herein and the case is presented in detail in a separate proposal by Newcastle University.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right
