Chartered Institute of Building
Chartered Institute of Building
5 Projects, page 1 of 1
assignment_turned_in Project2010 - 2012Partners:UCL, ICE, DECC, Building Research Establishment, CABE +11 partnersUCL,ICE,DECC,Building Research Establishment,CABE,Department of Energy and Climate Change,Scottish and Southern Energy SSE plc,Design Council,Tengbomgruppen ab,CIH,Tengbomgruppen ab,Department for Business, Energy and Industrial Strategy,Building Research Establishment Ltd BRE,Chartered Institute of Building,Institution of Civil Engineers,Scottish and Southern Energy (United Kingdom)Funder: UK Research and Innovation Project Code: EP/I002170/1Funder Contribution: 791,195 GBPChallenging the lock-in of the current centralised UK energy system is essential to delivering the deep carbon cuts required over the period to 2050 to moderate climate change. Decentralised energy initiatives are currently being promoted, increasingly within the urban locations where the majority of the population and economic activity is located. Such decentralisation of energy infrastructure and associated decarbonisation initiatives would considerably change the nature of urban environments to 2050. But, to date, the research emphasis has been on identifying and transferring best practice from project to project without consideration of the limits to decentralisation, the implications for interconnected energy systems and the overall impact on urban areas. There is an urgent need to understand the implications of these decentralisation initiatives from the point of view of energy systems at different scales - urban, regional and national - and in terms of the overall sustainability of future change within urban areas. This involves considering how far such decentralisation could be pursued and what the carbon and other impacts would be. This project, therefore, takes a much-needed critical look at the scope for challenging lock-in through urban energy initiatives. Such energy initiatives are understood to include a combination of decentralised technologies for energy generation with strategies for energy and carbon reduction operating at different scales within urban areas. It will examine the range and types of urban energy systems that could be put in place from an international review and it will consider the issues raised by the need for such initiatives within the UK to integrate with energy systems at urban, regional and national scales in order to deliver energy and carbon reductions effectively. This will be explored through UK implementation studies and examination of innovative initiatives as yet untried in the UK context. The context will be scenario development to 2050 based on existing Foresight scenarios on energy management and the built environment. The project will then undertake a scaling-up exercise to consider the potential contribution to national carbon reduction of aggregating up individual urban energy initiatives. This will involve analysis of the extent to which such initiatives could be rolled out across the country and their carbon impact, given different mixes of energy technologies and carbon reduction strategies. The scaling up exercise will also consider the implications for future urban change using the developed 2050 scenarios. The result will be a critical assessment of future change in urban areas as a result of energy decentralisation and, therefore, the potential contribution of energy inititives within urban areas to carbon reductions at a national scale and urban sustainability to 2050.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c620da5506fed2a2352084132db45113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c620da5506fed2a2352084132db45113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2021Partners:Sheffield City Region LEP, Doncaster Chamber, Wildlife Trusts, EPS, Eden Project +39 partnersSheffield City Region LEP,Doncaster Chamber,Wildlife Trusts,EPS,Eden Project,RSWT,Climate Outreach,Yorkshire Agricultural Society,Yorkshire Agricultural Society,Federation of Small Businesses,Natural Resources Wales,PHE,SNH,CIH,Thornbridge Brewery,DEFRA,Sheffield Chamber of Commerce and Indust,SCOTTISH ENVIRONMENT PROTECTION AGENCY,Sheffield Chamber of Commerce,University of the West of England,Climate Outreach & Information Network,Public Health England,SW,NatureScot (Scottish Natural Heritage),Sheffield City Region LEP,Scottish Water (United Kingdom),PUBLIC HEALTH ENGLAND,Chartered Institute of Building,Canal & River Trust,DHSC,SEPA,Natural England,UWE,Natural Resources Wales,Sheffield City Council,Sheffield City Council,Thornbridge Brewery,Doncaster Chamber,Eden Project,Natural England,The Emergency Planning Society,Natural Resources Wales,Canal and River Trust,Federation of Small BusinessesFunder: UK Research and Innovation Project Code: NE/L01033X/1Funder Contribution: 1,662,830 GBPThis innovative interdisciplinary project aims to develop an easy-to-use, evidence-based resource which can be used in decision-making in drought risk management. To achieve this, we will bring together information from drought science and scenario-modelling (using mathematical models to forecast the impacts of drought) with stakeholder engagement and narrative storytelling. While previous drought impact studies have often focused on using mathematical modelling, this project is very different. The project will integrate arts, humanities and social science research methods, with hydrological, meteorological, agricultural and ecological science knowledge through multi-partner collaboration. Seven case study catchments (areas linked by a common water resource) in England, Wales and Scotland will be selected to reflect the hydrological, socio-economic and cultural contrasts in the UK. Study of drought impacts will take place at different scales - from small plot experiments to local catchment scale. Citizen science and stakeholder engagement with plot experiments in urban and rural areas will be used as stimuli for conversations about drought risk and its mitigation. The project will: (i) investigate different stakeholder perceptions of when drought occurs and action is needed; (ii) examine how water level and temperature affect drought perception; (iii) explore the impact of policy decisions on drought management; (iv) consider water users' behaviours which lead to adverse drought impacts on people and ecosystems and; (v) evaluate water-use conflicts, synergies and trade-offs, drawing on previous drought experiences and community knowledge. The project spans a range of sectors including water supply; health, business, agriculture/horticulture, built environment, extractive industries and ecosystem services, within 7 case-study catchments. Through a storytelling approach, scientists will exchange cutting edge science with different drought stakeholders, and these stakeholders will, in turn, exchange their knowledge. Stakeholders include those in: construction; gardeners and allotment holders; small and large businesses; local authorities; emergency planners; recreational water users; biodiversity managers; public health professionals - both physical and mental health; and local communities/public. The stakeholder meetings will capture various data including: - different stakeholder perceptions of drought and its causes - local knowledge around drought onset and strategies for mitigation (e.g. attitudes to water saving, responses to reduced water availability) - insights into how to live with drought and increase individual/community drought resilience - the impact of alternating floods and droughts The information will be shared within, and between, stakeholder groups in the case-studies and beyond using social media. This information will be analysed, and integrated with drought science to develop an innovative web-based decision-making utility. These data will feedback into the drought modelling and future scenario building with a view to exploring a variety of policy options. This will help ascertain present and future water resources availability, focusing on past, present and future drought periods across N-S and W-E climatic gradients. The project will be as far as possible be 'open science' - maintaining open, real-time access to research questions, data, results, methodologies, narratives, publications and other outputs via the project website, updated as the project progresses. Project outputs will include: the decision-making support utility incorporating science-narrative resources; hydrological models for the 7 case-study catchments; a social media web-platform to share project resources; a database of species responses/management options to mitigate drought/post-drought recovery at different scales, and management guidelines on coping with drought/water scarcity at different scales.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4e5f2435e22969143fca0f5acc2d1c7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4e5f2435e22969143fca0f5acc2d1c7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2019Partners:Shenzhen Institute of Building Research, Buro Happold Limited, China Society for Urban Studies, Chongqing Commission of Urban-Rural Dev, SKANSKA +42 partnersShenzhen Institute of Building Research,Buro Happold Limited,China Society for Urban Studies,Chongqing Commission of Urban-Rural Dev,SKANSKA,Ministry of Housing and Urban-Rural Development,Shanghai Research Inst of Building Sci,BDP Partnership,Chongqing University,ARCC,China Assoc of Building Energy Efficieny,University of Cambridge,China-Britain Business Council,UK Aecom,China Assoc of Building Energy Efficieny,ARCC,Shimao Group,Shimao Group,Screenspace Productions Ltd,Hangzhou Municipal Construction Comm,Chongqing Green Building Council,China Academy of Building Research,SPIE Limited (UK),BURO HAPPOLD LIMITED,China Academy of Building Research,Zhejiang Province Construction Tech,CSWADI (China Southwest Architec Design),CSWADI (China Southwest Architec Design),Chartered Institute of Building,Shanghai Research Inst of Building Sci,Screenspace Productions Ltd,Aecom (United Kingdom),Zhejiang Province Construction Tech,University of Cambridge,Shenzhen Institute of Building Research,AECOM Limited (UK),China-Britain Business Council,BuroHappold (United Kingdom),Chongqing Construction Engineering Group,UNIVERSITY OF CAMBRIDGE,China Green Building Council,MOHURD China,SPIE Limited (UK),CIH,Chongqing University,Building Design Partnership (BDP),Skanska (United Kingdom)Funder: UK Research and Innovation Project Code: EP/N009797/1Funder Contribution: 798,986 GBPLoHCool focuses on topic T1 'Delivering economic and energy-efficient heating and cooling to city areas of different population densities and climates'. It confronts directly the conundrum of offering greater winter and summer comfort in a Continental climate zone whilst mitigating what would be a carbon penalty of prodigious proportions. It concentrates on recovering value from the existing building stock, some 3.4 Billion m2 in which dwell and work some 550 Million citizens. It is highly cross-disciplinary involving engineers, building scientists, atmospheric scientists, architects and behavioural researchers in China and UK measuring real performance in new and particularly in existing buildings in Chinese cities to investigate the use of passive and active systems within integrated design and re-engineering. It focuses on the very challenging dynamic within China's Hot Summer/Cold Winter HSCW climate zone. It aims to enable the much desired improvements in living conditions and comfort levels within buildings through developing a keen understanding of the current heating and cooling technologies and practices in buildings by monitoring, surveying and measuring people's comfort and capturing this understanding through developing systems modelling including energy simulations. It will borrow on UK research for comparative purposes, for example work examining the current and future environmental conditions within the whole National Health Service (NHS) Hospital Estate in England and the practical economic opportunities, very considerable, for significant improvement whilst saving carbon at the rate required by ambitious NHS targets. It will propose detailed practical and economic low and very low carbon options for re-engineering the dominant building types which we will identify in a series of cities, as developed with local stakeholders, contractors and building professionals, exploring economic and energy-efficient low carbon district heating and cooling systems. Finally, it will test them in the current climate, 'current' extreme events, future climates and will estimate the carbon implications and cost of widespread implementation. Findings for the existing stock will be equally applicable to new-build, in many ways a simpler prospect.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3889d1a6c81eacd636f37f448616c5ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3889d1a6c81eacd636f37f448616c5ae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2025Partners:The Institute of Materials, Confederation of Paper Industries, North East Process Industry ClusterNEPIC, Nanyang Technological University, NTU +72 partnersThe Institute of Materials,Confederation of Paper Industries,North East Process Industry ClusterNEPIC,Nanyang Technological University,NTU,The Climate Change Committe,NAREC National Renewable Energy Centre,Star Refrigeration Ltd,Agility Eco Services Ltd,Mineral Products Association,Royal Academy of Engineering,POWER ROLL LIMITED,Association for Decentralised Energy,The Institute of Materials,Sintef Energi As,Power Roll (United Kingdom),Department for Business, Energy and Industrial Strategy,North East Process Industry ClusterNEPIC,Visvesvaraya Technological University,European Energy Research Alliance,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas,Mineral Products Association,National Institute of Technology,SINTEF AS,Durham County Council,Energy Networks Association,Durham University,Nestlé (United Kingdom),AGFW,GE (General Electric Company) UK,NMAM Institute of Technology,Euroheat & Power,Power Roll,Narec Distributed Energy,University of Sheffield,Heat Pump Association,Ciemat,Tata Steel (United Kingdom),NMAM Institute of Technology,Kensa Engineering Ltd,Tata Steel Europe,Euroheat & Power,GT Energy UK Ltd,North East of England Process Industry Cluster (United Kingdom),University of Sheffield,National Institute of Technology Karnataka,E.ON Energy Solutions Ltd,Dept for Sci, Innovation & Tech (DSIT),European Energy Research Alliance (EERA),SJTU,Leuphana University of Lüneburg,AGFW (Energy Efficiency Association),Leuphana University,NESTLE UK LTD,GT Energy,Energy Networks Association,Federation of Environmental Trade Associations,Agility Eco Services Ltd,Energy Systems Catapult,Tata Steel (UK),The Committee on Climate Change,Royal Academy of Engineering,Kensa Group Ltd,Star Refrigeration Ltd,Dept for Business, Innovation and Skills,Chartered Institute of Building,Confederation of Paper Industries,CIH,Association for Decentralised Energy,General Electric (United Kingdom),Association for Decentralised Energy,Durham County Council,Leuphana University,GE (General Electric Company) UK,Durham University,E.ON Energy Solutions Ltd,Energy Systems CatapultFunder: UK Research and Innovation Project Code: EP/T022906/1Funder Contribution: 1,159,700 GBPDecarbonising both heating and cooling across residential, business and industry sectors is fundamental to delivering the recently announced net-zero greenhouse gas emissions targets. Such a monumental change to this sector can only be delivered through the collective advancement of science, engineering and technology combined with prudent planning, demand management and effective policy. The aim of the proposed H+C Zero Network will be to facilitate this through funded workshops, conferences and secondments which in combination will enable researchers, technology developers, managers, policymakers and funders to come together to share their progress, new knowledge and experiences. It will also directly impact on this through a series of research funding calls which will offer seed funding to address key technical, economic, social, environmental and policy challenges. The proposed Network will focus on the following five themes which are essential for decarbonising heating and cooling effectively: Theme 1 Primary engineering technologies and systems for decarbonisation Theme 2 Underpinning technologies, materials, control, retrofit and infrastructure Theme 3 Future energy systems and economics Theme 4 Social impact and end users' perspectives Theme 5 Policy Support and leadership for the transition to net-zero
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b28e532a31af5e3277fa8d6a32499ef0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b28e532a31af5e3277fa8d6a32499ef0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:Building Research Establishment Ltd BRE, Great Ormond Street Hospital Children's Charity, Shire Mineral & Machinery Suppliers, Brunel University London, Expedition Engineering Ltd +103 partnersBuilding Research Establishment Ltd BRE,Great Ormond Street Hospital Children's Charity,Shire Mineral & Machinery Suppliers,Brunel University London,Expedition Engineering Ltd,NFDC (Nat Fed Demolition Contractors),Aggregate Industries,Buro Happold Limited,HKPU,Mineral Products Association,University of Surrey,Hoskins Circular,CIH,AECOM,CIRIA,Northumberland County Council,Arup Group (United Kingdom),Yale University,Department for Transport,Great Ormond Street Hospital,SJTU,ENVIRONMENT AGENCY,Granta Design (United Kingdom),HLM Architects,GCP Applied Technologies,Costain (United Kingdom),Etex Building Performance Limited,Hoskins Circular,OFFICE FOR NATIONAL STATISTICS,Bywaters,DB Group,Hunan University,Brunel University,Environment Agency,High Speed Two HS2 Ltd,UNIVERSITY OF CAMBRIDGE,Askew Soil & Land Ltd,Northumberland County Council,TU Wien,BuroHappold (United Kingdom),University of Cambridge,LafargeHolcim (United Kingdom),Yale University,University of Cambridge,FORTIS IBA,University of Surrey,Chartered Institute of Building,LafargeHolcim,BSI,University of Otago,Contaminated Land: Applications in the Real Environments,British Standards Institution,Highways Agency,TUW,DEFRA,High Speed Two HS2 Limited,540 World LLP,Mace (United Kingdom),BURO HAPPOLD LIMITED,UK QUALITY ASH ASSOCIATION,Construction Products Association,EA,University Federico II of Naples,Etex Building Performance Limited,CL:AIRE,Shire Mineral & Machinery Suppliers,GCP Applied Technologies,Granta Design (United Kingdom),Hunan Women'S University,ONS,Office for National Statistics,Brick Development Association,Arup Group,UCL,British Glass,FORTIS IBA,LafargeHolcim Group (UK) (Aggregate Ind),Expedition (United Kingdom),Specwall-Alliance Ltd,National Highways,Building Research Establishment,Bywaters,Cambridge CSIC,University of Otago,Story Contracting Ltd,Mineral Products Association,Cambridge CSIC,Aecom (United Kingdom),Askew Soil & Land Ltd,Network Rail,UK Coll for Res in Infra & Cities UKCRIC,COSTAIN LTD,British Glass,Story Contracting Ltd,British Glass,UK Quality Ash Association,Vienna University of Technology,Network Rail,Construction Industry Research and Information Association,Specwall-Alliance Ltd,LafargeHolcim (France),Arup Group Ltd,UK Quality Ash Association,Construction Products Association,540 World LLP,Mace,DB Group,Brick Development Association (The)Funder: UK Research and Innovation Project Code: EP/V011820/1Funder Contribution: 4,430,350 GBP177 million tonnes of virgin aggregates, 15 million tonnes of cement and 2 billion bricks were used to build houses, civic and commercial buildings, roads and railways, etc, in the UK in 2016. Meanwhile, 64 million tonnes of waste arose from construction and demolition. Materials from construction and demolition are mainly managed by down-cycling with loss of the value imparted to them by energy-intensive and polluting manufacturing processes; for example, high value concrete is broken down into low value aggregate. Environmental damage is associated with the whole linear life cycles of mineral-based construction materials, and includes scarring of the landscape and habitat destruction when minerals are extracted from the earth; depletion of mineral and energy resources; and water use and emission of greenhouse gases and other pollutants to air, land and water, during extraction, processing, use and demolition. It is important to take action now, to return materials to the resource loop in a Circular Economy, and reduce the amount of extraction from the earth, as the amount we build increases each year. For example, the UK plans spend £600 billion to build infrastructure in the next decade. The UKRI National Interdisciplinary Circular Economy Research Centre for Mineral-based Construction Materials therefore aims to do more with less mineral-based construction materials, to reduce costs to industry, reduce waste and pollution, and benefit the natural environment that we depend on. There is potential for mineral-based construction materials to be reused and recycled at higher value, for example, by refurbishing rather than demolishing, or by building using reusable modules that can be taken apart rather than demolished, so all the energy that went into making them isn't wasted. It may also be possible to substitute minerals from natural sources by other types of mineral wastes, such as the 76 million tonnes of waste arising from excavation and quarrying, 14 million tonnes of mineral wastes that come from other industries, or 4 billion tonnes of historical mining wastes. We can also be more frugal in our use of mineral-based construction materials, by designing materials, products and structures to use less primary raw materials, last longer, and be suitable for repurposing rather than demolition, and using new manufacturing techniques. First, our research will try to better understand how mineral-based construction materials flow through the economy, over all the stages of their life cycle, including extraction, processing, manufacture, and end-of-life. The Centre will work to support the National Materials Database planned by the Office of National Statistics, which will capture how, where and when materials are used and waste arises, so that we have the information to improve this system. We will also study how any changes we might make to practices around minerals use would affect the environment and the economy, such as greenhouse gas emissions, costs to businesses, or jobs. Second, we will work on technical improvements that we can make in design of mineral-based products and structures, and in all the life-cycle stages of mineral-based construction materials. Third, we will look at how changes in current business models and practices could support use of less mineral-based construction materials, such as how they might be able to move more quickly to new technologies, or how they might use digital technologies to keep track of materials. We will explore how the government can support these changes, and how we can provide education so that everyone working in this system understands what they need to do. In the first 4 years of our Centre, 15 postdoctoral researchers will gain research experience working in the universities for 2y and will then work with an industrial collaborator for a year, to implement the results of their research. More than 20 PhD and 30 MSc students will also be trained in the Centre.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6d5d10a61c5b1d51c89a9a15fb376b16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6d5d10a61c5b1d51c89a9a15fb376b16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu