Powered by OpenAIRE graph

IREN SPA

Country: Italy
22 Projects, page 1 of 5
  • Funder: European Commission Project Code: 952110
    Overall Budget: 2,000,740 EURFunder Contribution: 1,999,970 EUR

    The fast and cost-efficient detection of pathogens is highly important in many sectors such as healthcare, agriculture, and food industry. However, current technologies are limited, and significant advances are required to develop low-cost (<10€) detection assays that can detect a few bacterial cells (<10 cells/ml) within less than one hour. In the FET-Open project MARA, which is the basis for MARILIA, we have developed novel technologies and tools that have a high exploitation potential. Thus, we have initiated the follow-up project MARILIA, which aims to exploit these results and realise a new detection concept for the fast, low-cost identification of human pathogens in water samples. In MARILIA, we will increase the technology readiness level (TRL) of our novel detection concept from TRL 2 to TRL 5. A well-balanced consortium has been established, comprising an applied research institute as coordinator (AIT, coordinated also the MARA project), a university (UZ), a basic research institute (RBI), an SME (D1, acting as business incubator) and a large company (IREN, representing a potential future customer). If the MARILIA detection assay meets the requirements defined by IREN, a start-up will be founded to commercially exploit the innovations in the post-project phase.

    more_vert
  • Funder: European Commission Project Code: 101006255
    Overall Budget: 1,381,380 EURFunder Contribution: 1,381,380 EUR

    We are facing complex societal challenges, such as protecting the environment, promoting healthy living and fighting climate change. To address such challenges, citizens must be equipped with the ability to responsibly engage in scientific discussions and decisions. Traditional formal schooling has not been able to achieve this goal: There is a wide-spread lack of scientific knowledge at all level of society and students' interest in science tends to decline within school years. One reason is the decontextualised way in which science is taught. MULTIPLIERS aims to facilitate the transition of schools into innovative and open collectors of new ideas, practices, scientific approaches, able to offer to the communities in which they are embedded a space for open, inclusive and inquiry-based learning on science issues which have an impact on citizens' lives. This will be achieved by establishing multiplayers' partnerships (Open Science Communities, OSCs) involving schools, families, civil society organisations, informal education providers, policy-makers, the media and a vast range of science institutions in six EU countries, very different in terms of geographical and economic situation. OSCs will jointly select socio-scientific issues to be tackled and develop real-life projects to be implemented in schools involving more than 1500 students of all educational levels across six EU countries. Students will interact with a broad spectrum of science professionals and be involved in data collection and decision-making processes. Via open community events, they will then share and rethink their findings and experiences, liaising with families and society, acting as science multipliers. To ensure the results' transferability and uptake, final recommendations, guidelines, and learning materials will be published in an multilingual open webspace; OSCs will be maintained and enlarged after the end of the project to further pursue the MULTIPLIERS open schooling process.

    more_vert
  • Funder: European Commission Project Code: 731778
    Overall Budget: 4,133,300 EURFunder Contribution: 3,049,210 EUR

    Pervasive and on-line water quality monitoring data is critical for detecting environmental pollution. However, it’s not easy to gather such data, at least not for all contaminants. Currently, water utilities rely heavily on frequent sampling and laboratory analysis in order to acquire this information. For this situation to be improved, portable and high-performance devices for pervasive water quality monitoring are required. Towards this end, there has been growing interest in expanding spectroscopic methods beyond the 2μm range of the infrared spectrum. That region of the spectrum is home to many vibrational & rotational absorptions of compounds related to water quality. Unfortunately, water itself is a strong absorber of infrared light. Thus, such methods were restricted to laboratory settings until now. WaterSpy addresses this challenge by developing water quality detection photonics technology suitable for inline, field measurements, operating in the 6-10 μm region. The solution is based on the combined use of advanced, tuneable Quantum Cascade Lasers and fibre-coupled, fast & sensitive Higher Operation Temperature photodetectors. Together with these new components, optimized laser driving and detector electronics as well as laser modulation concepts will be developed. Attenuated total reflectance spectroscopy will be used to give rise to the biochemical profile of the surface chemistry of the sample. Targeted analytes will be specific heterotrophic bacterial cells. Several novel techniques are employed in order to increase the SNR, including antibodies capable of binding the targeted analytes and a novel pre-concentration method. WaterSpy technology will be integrated, for validation purposes, to a commercially successful water quality monitoring platform, in the form of a portable device add-on. WaterSpy will be used in the field for the analysis of critical points of water distribution networks. This will be demonstrated in two different demo sites in Italy

    more_vert
  • Funder: European Commission Project Code: 101096946
    Overall Budget: 2,882,180 EURFunder Contribution: 2,317,390 EUR

    The large scale integration of renewable energy sources (RES) has introduced a new operating paradigm. Renewable energy sources are characterized by uncertainty and volatility. Moreover, overloading of transmission and distribution feeders have become more frequent. The curtailment of renewable power generation has thus increased, contradicting the goals for high shares of RES. A valuable solution to these challenges is the introduction of flexibility from flexible resources and loads. In this context, FlexCHESS project proposes cutting-edge solutions based on digital twin concept, Virtual energy storage systems (VESS) and Distributed Ledger Technology (DLT) to revolutionize the existing practices. Based on the aggregation of Connected Hybrid Energy Storage System (CHESS), FlexCHESS improves the grid stability while increasing the profitability of its installations by guaranteeing various ancillary services at the distribution and transmission network levels. FlexCHESS will also ensure the highest level of interoperability of the proposed solutions and enhance the innovation capacity and competitiveness of SMEs and Startups in Europe by unlocking access to meaningful information and co-creating new business opportunities. This will be achieved by the appropriate promoting of open innovation and making smart technologies an asset for intelligent business. In order to validate and evaluate the proposed solutions, five pilot sites demonstrations with diverse assets in different European countries are planned. The aggregation and optimization of different resources will be extended to take into account not only electrical energy storage systems (ESS), but also multi-ESSs. Thus, FlexCHESS project will define different scenarios allowing to evaluate the performances and flexibility capability of CHESS. FlexCHESS project Consortium gathers 3 universities, 2 large companies, 3DSOs, 4 SMEs, and 2 NGO.

    more_vert
  • Funder: European Commission Project Code: 646568
    Overall Budget: 3,869,610 EURFunder Contribution: 3,197,790 EUR

    The introduction of the electricity market, the widespread diffusion of distributed generation from renewable and non-programmable energy sources and the need for storage are quickly changing the problems that Transmission and Distribution system operators have to face in their activity and are requiring a “smarter” grid. A first step in this direction is the development and installation of a flexible smart metering architecture for multiple energy vectors. Up to now the smart meters that in some countries are being installed at the users are nearly only devoted to billing improvements. The new metering systems must go much further to provide their contribution to various objectives such as end-user affordability of electricity, energy and market efficiency improvement, CO2 emissions and pollutants reduction. In the FLEXMETER project a flexible, multi-utility, multi-service metering architecture will be designed and deployed in two demonstrators. Simple off-the-shelf meters will be placed at the users for electric, thermal and gas metering; they will communicate with a building concentrator, where the “smartness” of the metering system will reside. A central cloud system will collect data from the building concentrators and from MV/LV substation meters. Data collection, fusion and mining algorithms will be adopted. The proposed architecture will allow for innovative services for the prosumers (e.g. analysis of the energy consumption), for the Distribution System Operators (DSOs) (e.g. fault detection, network balancing and storage integration) and for the retail market. Also demand side management devices could be plugged into the system. In the FLEXMETER project two pilot applications in two different countries (Italy and Sweden), on real systems, with the involvement of the local DSOs and volunteer prosumers will be demonstrated. The results on the demonstrators will then be scaled up to the size of the cities in order to evaluate the advantages on a real scale.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.