Powered by OpenAIRE graph

PSA ID

Country: France
9 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101069756
    Overall Budget: 4,854,770 EURFunder Contribution: 4,854,770 EUR

    AM4BAT will develop innovative component materials and assemble an anode-free all-solid-state battery (ASSB) manufactured by a cost-competitive and sustainable vat photopolymerization 3D printing. The objective is to reach a high-performance battery the energy density of 400 Wh/kg and 1000 Wh/L for electric vehicles applications. This will be achieved by developing materials including i) single crystal NMC811 with superior energy, ii) LNMO Co-free and higher voltage for power AM4BAT variant, iii) dopped LLZO with different size from 0.5 to 5m and 50-100 nm for higher loading in the HSE, and iv) novel acrylic, nanocellulose, sustainable photocurable polymer. The materials will be optimized for their processing by additive manufacturing. AM4BAT will then validate the technology via 3-Ah pouch cells reaching TRL5, and will carry out an evaluation of manufacturability, a full sustainability assessment and a recycling study to support customers uptake. Identified stakeholder groups as well as other research initiatives will be actively involved to ensure dissemination of AM4BAT results and broader users acceptance. With its ambitious concept based on cutting-edge 3D printed ASSB and a strong consortium involving the whole value chain from material providers to an OEM, AM4BAT aims to overcome the remaining technological obstacles of the Gen 4b technology as specified in the work programme and accomplish the urgent shorter-term needs of the battery industry: to make Gen 4b batteries a viable technology beyond 2025. On longer term, the AM4BAT outcomes will contribute to the creation of a sustainable European battery manufacturing value chain helping the EU to succeed in the electric mobility roll-out and accelerate the energy transition.

    more_vert
  • Funder: European Commission Project Code: 690705
    Overall Budget: 4,918,430 EURFunder Contribution: 4,918,430 EUR

    Automation in passenger cars is constantly increasing. In order to leverage the introduction of highly automated vehicles to the market and to fully exploit the automation’s potential to improve traffic safety and efficiency the careful design of the human-machine interaction is of utmost importance. Human drivers will remain part of the system for a long time. The vision of AutoMate is a novel driver-automation interaction and cooperation concept to ensure that (highly) automated driving systems will reach their full potential and can be commercially exploited. This concept is based on viewing and designing the automation as the driver’s transparent and comprehensible cooperative companion or teammate. Driver and automation are regarded as members of one team that understand and support each other in pursuing cooperatively the goal of driving safely, efficiently and comfortably from A to B. Only such kind of systems can enhance safety by using the strength of both the automation and human driver in a dynamic way. These systems will be trusted and accepted, which is inevitable for drivers to be willing to buy and use such systems appropriately. The top-level objective of AutoMate is to develop, demonstrate and evaluate the “TeamMate Car” concept as a major enabler of highly automated vehicles. In order to realize the concept we will perform research and develop innovations for 7 technical Enablers: (1) Sensor and Communication Platform, (2) Probabilistic Driver Modelling and Learning; (3) Probabilistic Vehicle and Situation Modelling; (4) Adaptive Driving Manoeuvre Planning, Execution and Learning; (5) Online Risk Assessment; (6) TeamMate HMI; and (7) TeamMate System Architecture. The corresponding innovations will be integrated und implemented on several car simulators and real vehicles to evaluate and demonstrate the project progress and results in real-life traffic conditions.

    more_vert
  • Funder: European Commission Project Code: 862482
    Overall Budget: 5,684,320 EURFunder Contribution: 5,684,320 EUR

    ARENHA (Advanced materials and Reactors for Energy storage tHrough Ammonia) is a European project with global impact seeking to develop, integrate and demonstrate key material solutions enabling the use of ammonia for flexible, safe and profitable storage and utilization of energy. Ammonia is an excellent energy carrier due to its high energy density, carbon-free composition, industrial know-how and relative ease of storage. ARENHA demonstrates the feasibility of ammonia as a dispatchable form of large-scale energy storage, enabling the integration of renewable electricity in Europe and creating global green energy corridors for Europe energy import diversification. Innovative Materials are developed and integrated into ground-breaking systems in order to demonstrate a flexible and profitable power-to-ammonia value chain but also several key energy discharge processes. Specifically, ARENHA will develop advanced SOEC for renewable hydrogen production, catalysts for low temperature/pressure ammonia synthesis, solid absorbents for ammonia synthesis intensification and storage, catalysts and membrane reactors for ammonia decomposition. Energy discharge processes studied in ARENHA tackle various applications from ammonia decomposition into pure H2 for FCEV, direct ammonia utilization on SOFCs for power and ICEs for mobility. ARENHA will demonstrate the full power-to-ammonia-to-usage value chain at TRL 5 and the outstanding potential of green ammonia to address the issue of large scale energy storage through LCA, sociological survey, techno-economic analysis deeply connected with multiscale modeling. ARENHA’s ambitious objectives will be tackled by a consortium of 11 partners from universities, RTO, SMEs and large companies covering the adequate set of skills and market positioning. Considering the global nature of the ARENHA project, the consortium will strongly interact with its international advisory board composed of key energy stakeholders from the 5 continents.

    more_vert
  • Funder: European Commission Project Code: 780278
    Overall Budget: 3,889,150 EURFunder Contribution: 3,889,150 EUR

    PHENOmenon will develop and validate an integral manufacturing approach (material, process and technology) for large area direct laser writing of 2&3D optical structures, targeting high speed production of optical surfaces with subwavelength resolution, using NonLinear Absorption. Developments in photochemistry and laser beam forming will allow to produce structures at different scales (100 nm to 10 microns). An unedited productivity in freeform fabrication of 3D structures will trigger the manufacturing of new and powerful optostructures with applications in lighting, displays, sensing, etc. The novelty focuses on the combination of ultrasensitive nonlinear photocurable materials, and the laser projection of up to 1 million simultaneous laser spots. The photochemistry relies on new types of ultrasensitive photoinitiators and groundbreaking nonlinear sensitized resins for CW [Continuous Wave] laser writing. The developments in beam forming are based in modulation with SLMs [Spatial Light Modulators] and hybrid diffractive optics for massive 3D parallelization by imaging and holographic projection. The enabled optical structures (hybrid microlenses, waveguides, polarizers, metasurfaces and holograms) will be modelled at the micro and macroscale, to develop application oriented simulation and design methodologies. Selected demonstrators will show the capability to produce 3D optical micro-nanostructured components with unique optical characteristics, offering differential advantages in many products: advanced security holograms, efficient lighting, high performance optics, backlighting units for displays, holographic HMIs [Human Machine Interface] and planar concentrator microlenses. These components will contribute to address societal challenges like energy efficiency or security while reinforcing EU industry competitiveness. A consortium comprising 4 top Research Institutions and 8 Industrial partners (4 SMEs) covering the complete value chain, will develop this project clearly driven by user needs.

    more_vert
  • Funder: European Commission Project Code: 875029
    Overall Budget: 7,817,570 EURFunder Contribution: 7,817,570 EUR

    Europe is facing a major challenge to develop and produce a competitive Li-battery product in order to avoid dependency on third countries in its energy transition models. The Li-ion cell innovations should meet specific technical and economical requirements to sustain the market growth. The all-solid Li-ion technology appears to be one of the relevant options but it still has to be brought to higher TRL to be economically and environmentally friendly for a mass production compatible process. The ASTRABAT project gathers 14 partners, leaders in the different fields of research, development and production, from 8 countries. It aims to find optimal solid-state cell materials, components and architecture that are well suited to the demands of the electric vehicle market and compatible with mass production. The project will comply with improved safety demands and industrial standards. Five ambitious objectives were defined: 1. Development of materials for a solid hybrid electrolyte and electrodes enabling high energy, high voltage and reliable all-solid-state Li-ion cells 2. Gen#2D cell design: processing techniques compatible with existing routes of large scale cell manufacturing (10Ah, Energy type) and validation of a pilot prototype in a relevant industrial environment 3. Development of a 2030s eco-designed generation for Power-type and Energy type all-solid-state cells in pre-prototype (Gen#3DS and #3DC) 4. Define an efficient cell architecture to comply with improved safety demands 5. Structuration of the whole value chain of the all-solid-state battery, including eco-design, end of life and recycling The project will reinforce the European battery value chain, strengthen collaborations between RTOs, SMEs and Industrial partners from material development to integration in vehicles. The implementation of related work packages, tasks, milestones and risk assessment is considered to achieve these objectives comprehensively.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.