Powered by OpenAIRE graph

James Hutton Institute

James Hutton Institute

148 Projects, page 1 of 30
  • Funder: UK Research and Innovation Project Code: NE/X004449/1
    Funder Contribution: 516,524 GBP

    The UK government plans to increase woodland cover as part of its plans to store more carbon, to mitigate climate change. However, many of the UK's trees are threatened by climate change and a range of pests and diseases, which might limit their ability to contribute to carbon storage and the wide range of other benefits delivered by woodlands. We therefore need to make our woodlands resilient to these future threats. Resilience is the ability of a system, such as a woodland, to recover from a disturbance. One commonly proposed approach to increase the resilience of woods is to increase their tree diversity. Thus, spreading the risk amongst many different trees, as we don't know exactly how each tree species will respond to climate change, nor what threats from pests and diseases they may face decades into the future. However, woodland managers have different perceptions of diversity, and how management may best deliver it, and we know that different tree species will support the woodland ecosystem in different ways. Therefore, it is important to combine stakeholders' knowledge with ecological knowledge to identify which tree species and management approaches best deliver diversification that increases resilience. DiversiTree focuses on woods dominated by two conifer species, Scots Pine and Sitka Spruce, as in the year to March 2021 54% of all new woodland was coniferous. Scots Pine is the UK's only native conifer of economic significance. It is planted for timber production but is also the dominant species in the culturally iconic native Caledonian pinewoods. Scots Pine is at risk from the tree disease Dothistroma. Sitka Spruce is not native to Britain but is our most economically valuable tree species and is at risk from invasive bark beetles and climate change. This project addresses four knowledge gaps related to the diversification of woodlands: 1) How do stakeholders understand forest diversity, their diversification strategies, and their visions and ambitions for diverse future forests? 2) Are the microbes found on the leaves of trees more diverse in woodlands with mixed tree species and does this help trees to better defend themselves against diseases? 3) How may diversification of tree species within a wood allow the continued support of woodland biodiversity? 4) How do we implement and communicate management strategies to increase woodland resilience? To address these knowledge gaps, we work across disciplines bringing together ecologists, microbiologists, social scientists, and woodland managers. The Woodland Trust is embedded at the heart of our project to enable us to co-develop and check the feasibility of our results with practitioners. Results from interviews with woodland managers, focus groups and analyses of policy documents, will be used to improve knowledge of the options for woodland diversification, and both the enthusiasm for, and capacity to, implement diversification strategies. The microbes on leaves are important for plant health. Utilizing existing long-term experiments, we will examine the microbes on the leaves of Scots Pine grown in monocultures and in mixed woods. We will assess if the diversity of microbes on a leaf increases as the diversity of tree species increases, and whether this enables the trees to resist existing diseases. Surprising we don't have lists of which species use which trees. This information is required if we are to plant trees that will continue to support woodland biodiversity. We will collate data on the biodiversity hosted by Scots Pine and Sitka Spruce and assess which other tree species could also support the same biodiversity. Finally, we bring the results together to co-develop with practitioners, management strategies for diversification and case studies illustrating how the results can be implemented. The results will be shared via videos, podcasts, social media, and practitioner notes in addition to publications in the scientific literature.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/E007120/1
    Funder Contribution: 514,991 GBP

    Pathogen attack of crop plants is a key issue affecting agricultural sustainability in terms of both yield loss due to disease and environmental impact due to fungicide application. The oomycete pathogen Phytophthora infestans is the most significant pathogen of potato, the world's fourth largest crop. P. infestans is responsible for large yield losses through late blight disease, and costs associated with chemical control amount to £3M globally per year. Genetic resistance to P. infestans and control chemicals have been deployed with limited success, as both have been readily overcome by variation in pathogen populations. This proposal aims to address the problems faced by existing control measures through exploitation of the P. infestans genome to seek vital and invariant components of its pathogenicity arsenal that can be targeted for sustainable potato protection. Specifically, this information will be used to identify sources of durable potato disease resistance for breeding and to develop novel control strategies that are intrinsically difficult for the pathogen to overcome. The oomycetes include more than 70 Phytophthora species and are arguably the most significant pathogens of dicotyledenous plants. In the last year or so, genes have been identified from oomycete pathogens of the model plant Arabidopsis, of soybean, and from P. infestans itself (by the SCRI group), that encode proteins that trigger resistance. These proteins are very different to each other except from a conserved motif that is similar to a sequence required for delivery of malaria virulence proteins inside human blood cells. Preliminary evidence suggests that this motif is required to deliver the oomycete proteins into the cells of their respective plant hosts. The motif has provided a signature to search for other proteins that are delivered inside host cells, where they may be exposed to defence surveillance systems. In this proposal we aim to identify the entire complement of such proteins from P. infestans. We will characterize these proteins to seek those that are essential for infection (and thus are not easily lost by the pathogen) and those that show little sequence variation in diverse strains of the pathogen (and thus appear to be under selective pressure to remain unchanged). We postulate that such proteins represent potential Achilles' Heels for the pathogen if resistances can be found that recognize them. To this end, we will search in a wild potato biodiversity collection at SCRI (The Commonwealth Potato Collection) for plants that are resistant to these proteins (and thus to most, if not all, strains of P. infestans). These resistances are likely to be highly durable and thus will be prioritized for introduction into cultivated potato in commercially supported breeding programmes at SCRI. The second 'Achilles' Heel' of P. infestans that we intend to exploit is the machinery required for translocation of these virulence proteins inside potato cells. The translocation machinery is potentially a very suitable target for disease control, since inhibition of this delivery process would prevent effector proteins entering host cells and thus inhibit the pathogen's normal infection process. Experiments will be conducted to find the proteins responsible for translocation by identifying proteins that bind to the conserved delivery motif. We will conduct experiments to determine how they work. Mimicks of these proteins which bind to the delivery motif in oomycete virulence proteins will potentially not only prevent P. infestans from causing infection but will have a wider application by inhibiting other oomycete plant pathogens and will possibly extend to unrelated pathogens such as malaria. The biotechnology company Syngenta is the end-user that will evaluate the use of our findings in this aspect of the project.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/H000801/1
    Funder Contribution: 343,205 GBP

    The aim of this project is to characterise those genes that are responsible for the inception of pathogenicity by Globodera pallida. The British Potato Council estimates the UK potato production, processing and retail markets to be worth c. £3 billion p.a. and the potato cyst nematodes (PCN), Globodera rostochiensis and G. pallida, are the most economically important nematode problems of this industry. They occur in 65% of UK potato land with G. pallida present at 92% of these sites. PCN impose an annual cost in excess of £50 million on UK potato growers and threaten the future of the crop for many growers. Breeding for resistance since the mid 1950s has produced few commercially acceptable varieties with resistance to G. pallida. Currently used chemical control methods are under increasing pressure due to cost, environmental and health concerns and there are no benign alternatives to the currently used compounds. Control of G. pallida is an essential requirement to maintain the competitiveness of U.K. production. For example, the consumer demand for food with no pesticide residues has resulted in Waitrose sourcing all its potatoes from crops that have not received a nematicide treatment (www.waitrose.com). This requires imports from countries with a lower PCN incidence or requires a more extensive agricultural system in the UK. Consumer support is likely for UK produce that avoids pesticide residues or environmental harm and is soundly based on a sustainable approach. This proposal underpins the innovation needed to reach that outcome. G. pallida must live as a parasite in plants. It has a complex interaction with its plant host. Second stage juvenile nematodes (J2) hatch from eggs in the soil, upon detecting a host growing nearby, then locate and subsequently invade the roots of the host. The J2 migrates inside the root and selects a single cell that it transforms into a large multinucleate feeding cell. Profound changes in plant cell structure and gene expression are induced by the nematode in establishing the feeding site. The nematode is known to spit into the cell. A few components of this spit are known to alter plant cellular development. In this proposal we aim to undertake a broad characterisation of putative pathogenicity proteins that cause the changes in plant physiology and that are therefore responsible for feeding site induction. We will determine if the putative pathogenicity proteins are produced in the glands of the nematode that secrete their 'spit'. The timing of the proteins' manufacture relative to the lifecycle of the nematode and its interaction with the plant will be measured to determine if they are required at the beginning of the interaction between the nematode and the plant, or continuously throughout the interaction. We will utilise high throughput fluorescent assays to determine if the putative pathogenicity proteins cause the nuclei of plant cells to increase in size - a common observable phenomenon in nematode feeding sites. We will also determine if the proteins can suppress host defence responses. Analysis will reveal what components of the plant cell the putative pathogenicity proteins interact with and then to ensure that the interaction has biological relevance components will be linked to one half of a fluorescent marker protein and co-transformed into plants. The marker protein does not produce fluorescence when it is split into N and C-terminal halves. Each half will be fused to one of the two putative interacting partners. This will lead to restoration of fluorescence within a cell if the nematode and plant proteins interact and reconstitute the split fluorescent protein. The advantage of this technique over other methods of visualizing protein-protein interactions is that it gives an indication of cellular localization of the complex, as well as interaction.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/E527863/1
    Funder Contribution: 71,317 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UK Research and Innovation Project Code: ES/V004433/1
    Funder Contribution: 342,106 GBP

    The COVID-19 pandemic is having substantial consequences on UK and global food and nutrition security (FNS). This project will undertake world-leading research to provide government, business and decision makers with the evidence that they need to develop a robust FNS response to the current pandemic. The pandemic is causing major shocks to the four pillars of FNS: access; availability; utilisation and stability. Examples include reductions in productivity (labour limitations), breakdown of norms of food systems (distribution, changed demand) and supply chain restrictions (e.g. shortages of agri-chemicals for crop management). Economic impacts are altering both supply, distribution and demand. Collectively these shocks are substantially altering food systems whilst in the longer-term normal processes of trade may not adapt appropriately leading to changes in the balance of traded commodities, reduction in food reserves and price increases. The issue of FNS is relevant to all members of society, particularly for those most vulnerable to shortages or price increases. The food sector is also a major part of the UK economy, as it contributes approximately £111 billion a year and accounts for over 13% of national employment. It is the UK's largest manufacturing sector. The project focusses on UK FNS which is heavily dependent on global markets. Nearly half of the food we consume is imported and UK livestock industries rely heavily on imported feed. Some countries have already restricted exports in order to supply home markets. Normal market forces, transportation and distribution networks may no longer be appropriate to provide national requirements. A priority is to understand how to increase capacity for self-reliance to maintain civic stability, a healthy population and to understand the ramifications for third countries. The aim of this study is to conduct an initial rapid FNS risk assessment and explore options for changes in agricultural production, trade and distribution to protect FNS without jeopardising wider ecological and climate goals. The Research Programme will deliver seven key outputs: 1. Report on rapid risk assessment of the global food system considering how direct and indirect COVID-19 impacts and responses are propagating risks to food and nutrition security. 2. Report on Rapid risk assessment of UK food system responses and vulnerabilities and consequences on access, availability, utilisation and stability. 3. A set of plausible scenarios to explore the cascading risks and consequences of pandemic impacts on food sand nutrition security. 4. Report on alternative land use and management options that will increase resilience. 5. Report and maps of the spatial assessment of the alternative land use and management options. 6. Report including infographics reviewing lessons learned from the pandemic to improve Food and Nutrition Security. 7. Two workshops and other dissemination events and report with recommendations. The knowledge and foresight generated will be applicable to and of value across multiple sectors of the economy. It will inform policy support and development within UK and devolved Governments and help industry and business make informed decisions and plan adaptations. Information generated will support the UK's strong position in global trade. Identifying data gaps now will enable improved monitoring of impacts, both at UK and global scales.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.