Powered by OpenAIRE graph

OWI Oel-Waerme Institut GmbH

Country: Germany

OWI Oel-Waerme Institut GmbH

8 Projects, page 1 of 2
  • Funder: European Commission Project Code: 654650
    Overall Budget: 5,466,480 EURFunder Contribution: 5,465,730 EUR

    The overall objective of Residue2Heat is to enable the utilization of sustainable, ash rich biomass and residues in residential heating applications (20-200 kWth) to provide sustainable heat at a competitive price. In this concept, various 2nd generation agricultural, and forestry residue streams are converted into a liquid energy carrier near the biomass origin at an economic viable scale of 15-30 MWth using the fast pyrolysis process. Subsequently, the fast pyrolysis bio-oil (FPBO) is distributed to a large number of residential end-users. The FPBO should fulfill at least the draft CEN-specification for replacement of domestic heating oil and comply with REACH regulation. Additional quality control aspects for this application include the removal of extractives and solids from the FPBO. Ash is recovered from the fast pyrolysis process as a separate stream, and recycling and/or re-use will be evaluated in detail. Existing high efficient, condensing boilers are used as starting point in the project, as well as a proven, low emission blue-flame type burner. Within Residue2Heat technical development work is performed on the modification of such systems to enable FPBO as fuel. The emission control and energy efficiency of the heating systems are optimized by dedicated modeling of FPBO atomization and combustion kinetics, supported by single droplet combustion tests and spray characterization. This route benefits from the flexible nature of the fast pyrolysis process, allowing the use of various lignocellulosic biomass streams, but also by using modified residential heating systems for which manufacturing capabilities, market development and product distribution are already in place. Dedicated tasks are included to assess the environmental and social impacts, risks analysis and public acceptance. Additionally, business and market assessment activities are performed including specific issues on health and safety relevant to FPBO-fuelled residential boilers.

    more_vert
  • Funder: European Commission Project Code: 101083536
    Overall Budget: 4,993,390 EURFunder Contribution: 4,993,390 EUR

    Fit4Micro aims to develop a hybrid microCHP unit running on sustainable liquid biofuels. Application is foreseen at multi-family houses, and more specifically at remote and/or off-grid locations. The innovative system is based on a double shaft micro gas turbine (mGT) combined with a novel humidification unit. This unique combination leads to very high electrical efficiencies (>40%) as well as a very flexible heat:power ratio. Low emissions are achieved by the application of flameless combustion, and a high GHG emission reduction is obtained by using truly advanced, RED2 compliant biofuel. Use of a mGT as core-unit in Fit4Micro is ideal for domestic usage, as the system has very low noise output and is vibration free. Furthermore, rapid response times and fuel-flexible operation make this the ideal base for a highly efficient hybrid CHP system, resilient to changes in (local) fuel and power markets, empowering the consumers through digital solutions. Furthermore, the Fit4Micro unit will be integrated with a compression heat pump, an innovative adsorption and a solar PV system through the DC power system avoiding transmission losses. A smart control system will be developed to enable optimal performance at all times. Efficient fuel distribution and off-grid operation of Fit4Micro is enabled by using sustainable liquid biofuels. These fuels will be produced from biomass residues and organic waste streams, through fast pyrolysis followed by mild hydro-processing yielding a hydrotreated pyrolysis oil (HPO). In Fit4Micro the objective is to widen the feedstock basis and lower the fuel costs by i) using residues as the primary feedstock, and ii) by limiting hydrogen consumption by application of mild processing conditions. Besides technological development work, the Fit4Micro project includes specific activities on socio-economic and environmental sustainability, public perception, gender dimensions, market aspects, the regulatory framework & policies.

    more_vert
  • Funder: European Commission Project Code: 883753
    Overall Budget: 4,772,650 EURFunder Contribution: 4,772,650 EUR

    The overall goal of IDEALFUEL is to enable the utilization of lignin from lignocellulosic biomass as maritime fuel in a sustainable manner. IDEALFUEL aims to develop an efficient and low-cost chemical pathway to convert lignocellulosic biomass into a Bio Heavy Fuel Oil (Bio-HFO) with ultra-low sulphur levels that can be used as drop-in fuel in the existing maritime fleet. This will be achieved by the strategy to first extract lignin from lignocellulosic biomass as a Crude Lignin Oil (CLO) and to convert the CLO - in a second chemical step - into a Bio-HFO. The solid cellulose fraction, which will be separated from the CLO via simple filtration, can be used in the pulp and paper industry or converted into ethanol. Hemicellulose will either be separated from the CLO or end up in the Bio-HFO. IDEALFUEL’s ambition is to develop new technologies, solutions and processes from the current lab-scale (TRL3) via bench-scale (TRL4) to pilot scale (TRL5) and to prove the performance and compatibility of the Bio-HFO over the whole blending range in maritime fuel systems and marine engines. This includes a safety evaluation, which is necessary for the approval by the relevant regulatory bodies. Further, IDEALFUEL will prove the techno-economic potential to reach a cost level of 700 € per tonne in 2025, 600 € per tonne in 2030 and < 500 € per tonne beyond 2030 resulting from optimisation, scaling effects of larger plant sizes and repetitive installations. This is cost competitive with Ultra-Low Sulphur Fuel Oil (ULSFO) which current, 2019, price level is 450-550 €/ton. IDEALFUEL will also carry out a Well to Propeller impact assessment and Life Cycle Analysis to check and proof the soundness of the environmental, society and sustainability aspects of the to be developed technologies, processes, products and logistics.

    more_vert
  • Funder: European Commission Project Code: 815259
    Overall Budget: 4,042,460 EURFunder Contribution: 4,042,460 EUR

    The objective of SmartCHP is the realization of a cost-effective and flexible energy system by using a liquid bio-energy carrier to fuel an efficient diesel-engine based CHP. It will develop a smart and flexible, small-scale CHP unit (100-1,000 kWe) fueled with fast pyrolysis bio-oil originating from different types of biomasses and/or residues. Fast pyrolysis converts biomass into a uniform liquid intermediate called FPBO, and the process is characterized by a high feedstock flexibility. Nowadays, FPBO is produced on commercial scale in Europe. For small scale biomass CHP systems a standardized fuel, enabling optimization of the conversion units and thus creating a cost competitive value chain, is highly preferred. Moreover, to achieve high resource efficiencies at all times a highly flexible ratio between heat and power generation is desired. A smart, demand driven unit should be capable of dealing with the fluctuating energy demand and/or varying availability of wind/solar power. The SmartCHP system combines a FPBO fueled engine and flue gas boiler to produce electricity and heat at a high efficiency over the whole load range. A dedicated flue gas treatment guarantees low emissions. Moreover, a wide, adjustable heat-to-power ratio is covered which enables to respond directly to actual energy demands. The final result of SmartCHP is an integrated system consisting of an engine, boiler and flue gas treatment system adapted and optimized to run on FPBO (TRL 5). A real-time, predictive, dynamic model will be developed to find the optimal operation point at all energy demands. Techno-economic, socio-economic and environmental assessments will be performed to identify real market opportunities. The SmartCHP unit will be based on standard diesel engines, and specific investment costs are expected to be around 1,200 Eur/kWe; an electricity price below 0.10 Eur/kWh is realistic. Several case studies will be presented to illustrate the opportunities throughout Europe.

    more_vert
  • Funder: European Commission Project Code: 101083700
    Overall Budget: 3,334,880 EURFunder Contribution: 3,334,880 EUR

    Carbon neutral, high-energy density e-fuels are crucial to de-fossilize long-haul transport. Mildly oxygenated compounds such as C5+ (higher) alcohols and their ether derivatives hold the promise to overcome limitations of known e-fuels, such as non-oxygenated Fischer-Tropsch hydrocarbons or heavily oxygenated methanol and DME, but no process exists for their effective production. The project aims to develop a disruptive route wherein CO2, water and renewable power are converted to higher oxygenate e-fuels in a once-through hybrid process integrating three major catalysis branches: “electrocatalysis” is applied in a robust high-pressure CO2/H2O co-electrolysis step to produce e-syngas (H2/CO), which is converted in a single-reactor, slurry-phase process combining “solid thermocatalysis” for linear hydrocarbon synthesis and “molecular chemocatalysis” for in situ oxo-functionalization via reductive hydroformylation. In this process, integration of catalytic functionalities in tandem, alongside an engineered interfacing of high- and low-temperature conversion steps and energy unintensive membrane separation technologies, offer a blueprint for superior atom and energy efficiencies. The project will demonstrate the new e-fuel production process at bench-scale, and assess its capacity to cope with fluctuating energy inputs. Moreover, e-fuel formulation and life-cycle aspects are covered to fully realize the potential of the higher oxygenate e-fuel to distinctively unite excellent combustion properties (high cetane), exceptional reduction of tailpipe soot emissions, advantageous logistics as liquid at ambient conditions and compatibility with current-fleet fuel infrastructure and engine technologies, with emphasis on applications as diesel replacement in heavy-duty marine transport. An exploitation plan will be created together with international stakeholders, to consolidate EU’s capacity to export advanced e-fuel technologies to areas with vast green energy potential.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.