General Lighthouse Authorities
General Lighthouse Authorities
3 Projects, page 1 of 1
assignment_turned_in Project2016 - 2020Partners:Aecom (United Kingdom), DEFRA, General Lighthouse Authorities, ENVIRONMENT AGENCY, H R Wallingford Ltd +10 partnersAecom (United Kingdom),DEFRA,General Lighthouse Authorities,ENVIRONMENT AGENCY,H R Wallingford Ltd,Environment Agency,Atkins (United Kingdom),Atkins Ltd,General Lighthouse Authorities,UK Aecom,AECOM Limited (UK),EA,Atkins Ltd,Plymouth University,HR WallingfordFunder: UK Research and Innovation Project Code: EP/N022947/1Funder Contribution: 453,076 GBPHistoric rock-mounted lighthouses play a vital role in the safe navigation around perilous reefs. However their longevity is threatened by the battering of waves which may be set to increase with climate change. Virtual navigational aids such as GPS are fallible, and reliance on them can be disastrous. Mariners will therefore continue to need the physical visual aids of these strategic structures. The loss of any reef lighthouse will be incalculable in terms of safety, trade and heritage. Plymouth University has trialled the use of recording instruments to capture limited information on the loading and response of Eddystone Lighthouse, with the support of the General Lighthouse Authorities (GLAs) having legal responsibility to safeguard aids to marine navigation around the British Isles. The study evaluated the extreme logistical constraints of lighthouse operations and the feasibility of using instrumentation to understand the response of the lighthouse to wave loads, with results strongly encouraging a comprehensive study of the load and response environment. Hence a full-scale project is proposed whereby field, laboratory and mathematical/computer modelling methods, novel both individually and collectively, will be used to assess six of the most vulnerable rock lighthouses in the UK and Ireland. Depending on the findings the investigation will then focus on extended full-scale evaluation of one lighthouse for the following two winters. The field instrumentation run by University of Exeter, and which will include modal testing and long term instrumentation will require novel procedures and technologies to be created to deal with the challenging environmental and logistical constraints e.g. of access, timing power. The modal test data will be used to guide the creation, by UCL, of sophisticated multi-scale numerical simulations of lighthouses that can be used with the data to diagnose observed performance in the long-term monitoring. The numerical structural model will also be linked with advanced physical modelling at Plymouth University's COAST Laboratory, and numerical (computational fluid dynamic) simulations. Finally, based on the structural and wave loading models, the long term monitoring will be used to characterize the wave loading in-situ at full scale. Outcomes of the project will be used to inform the comprehensive structural health monitoring of other lighthouses both in the British Isles and further afield through the International Association of Lighthouse Authorities. This will lead to the identification of structural distress and reduction in the risk of failure through preventative measures. Methods developed will also be of relevance to other masonry structures under wave loads so the project team includes a number of industrial partners: AECOM, Atkins, HR Wallingford and the Environment Agency who have interests in this area. As the UK has a large number of ageing coastal defences whose vulnerability to wave load was demonstrated in the winter 2013/14 storms, the applicability of the STORMLAMP findings to these structures is an important additional benefit of the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::72eb4848f5d054e27068cd0382fdbe17&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::72eb4848f5d054e27068cd0382fdbe17&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2025Partners:Lloyd's Register Foundation, Carnegie Clean Energy, Brunel University, Wave Venture Ltd, UCD +79 partnersLloyd's Register Foundation,Carnegie Clean Energy,Brunel University,Wave Venture Ltd,UCD,Aalborg University,NIKU,LR IMEA,Universitat Politècnica de Catalunya,NUIM,Jeremy Benn Associates (United Kingdom),AAU,Swansea University,Cranfield University,Sichuan University,ESI Group (UK),Itasca Consultants (Germany),JBA Consulting,MeyGen Ltd,University of Leuven,CARDIFF UNIVERSITY,University of Cambridge,UC,Airbus (United Kingdom),The University of Manchester,Budapest University of Technology,University of Surrey,University of Cantabria,CRANFIELD UNIVERSITY,AIRBUS OPERATIONS LIMITED,NAFEMS Ltd,HKU,Ramboll Group,DPU,University of Salford,Plymouth University,University of Leuven,UWA,Wave Venture Ltd,Universidade de Vigo,MeyGen Ltd,NREL,UK Association for Computational Mechani,ESI Group (UK),University of Bristol,UK Association for Computational Mechani,OFFSHORE RENEWABLE ENERGY CATAPULT,Offshore Renewable Energy Catapult,Kyoto University,UPC,Southern University of Chile,Dalian University of Technology,CICESE,University of Oxford,Center for Scientific Research and Higher Education at Ensenada,General Lighthouse Authorities,Polytechnic University of Catalonia,General Lighthouse Authorities,UNIVERSITY OF CAMBRIDGE,Airbus Operations Limited,DNV GL Energy,TUHH,Carnegie Clean Energy,Offshore Renewable Energy Catapult,University of Western Australia,University of Cambridge,BUTE,SCU,NAFEMS Ltd,DNV GL Energy,National Renewable Energy Laboratory,Swansea University,Austral University of Chile,University of Surrey,KU Leuven,Cardiff University,Ramboll (Denmark),University of Manchester,University of Bristol,Brunel University London,Universidade de Vigo,Itasca Consultants GmbH,Cardiff University,UCLFunder: UK Research and Innovation Project Code: EP/T026782/1Funder Contribution: 312,511 GBPThe proposed new CCP-WSI+ builds on the impact generated by the Collaborative Computational Project in Wave Structure Interaction (CCP-WSI) and extends it to connect together previously separate communities in computational fluid dynamics (CFD) and computational structural mechanics (CSM). The new CCP-WSI+ collaboration builds on the NWT, will accelerate the development of Fully Coupled Wave Structure Interaction (FCWSI) modelling suitable for dealing with the latest challenges in offshore and coastal engineering. Since being established in 2015, CCP-WSI has provided strategic leadership for the WSI community, and has been successful in generating impact in: Strategy setting, Contributions to knowledge, and Strategic software development and support. The existing CCP-WSI network has identified priorities for WSI code development through industry focus group workshops; it has advanced understanding of the applicability and reliability of WSI through an internationally recognised Blind Test series; and supported collaborative code development. Acceleration of the offshore renewable energy sector and protection of coastal communities are strategic priorities for the UK and involve complex WSI challenges. Designers need computational tools that can deal with complex environmental load conditions and complex structures with confidence in their reliability and appropriate use. Computational tools are essential for design and assessment within these priority areas and there is a need for continued support of their development, appropriate utilisation and implementation to take advantage of recent advances in HPC architecture. Both the CFD and CSM communities have similar challenges in needing computationally efficient code development suitable for simulations of design cases of greater and greater complexity and scale. Many different codes are available commercially and are developed in academia, but there remains considerable uncertainty in the reliability of their use in different applications and of independent qualitative measures of the quality of a simulation. One of the novelties of this CCP is that in addition to considering the interface between fluids and structures from a computational perspective, we propose to bring together the two UK expert communities who are leading developments in those respective fields. The motivation is to develop FCWSI software, which couples the best in class CFD tools with the most recent innovations in computational solid mechanics. Due to the complexity of both fields, this would not be achievable without interdisciplinary collaboration and co-design of FCWSI software. The CCP-WSI+ will bring the CFD and CSM communities together through a series of networking events and industry workshops designed to share good practice and exchange advances across disciplines and to develop the roadmap for the next generation of FCWSI tools. Training and workshops will support the co-creation of code coupling methodologies and libraries to support the range of CFD codes used in an open source environment for community use and to aid parallel implementation. The CCP-WSI+ will carry out a software audit on WSI codes and the data repository and website will be extended and enhanced with database visualisation and archiving to allow for contributions from the expanded community. Code developments will be supported through provision and management of the code repository, user support and training in software engineering and best practice for coupling and parallelisation. By bringing together two communities of researchers who are independently investigating new computational methods for fluids and structures, we believe we will be able to co-design the next generation of FCWSI tools with realism both in the flow physics and the structural response, and in this way, will unlock new complex applications in ocean and coastal engineering
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137b8f9910925f9cc53ce84dd6db0d31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137b8f9910925f9cc53ce84dd6db0d31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2024Partners:Geometrics, Jacobs, ESP Central Ltd, Fraunhofer UK Research Ltd, Torr Scientific Ltd +114 partnersGeometrics,Jacobs,ESP Central Ltd,Fraunhofer UK Research Ltd,Torr Scientific Ltd,Oxford Electromagnetic Solutions Limited,BAE Systems (UK),Severn Trent Group,PA CONSULTING SERVICES LIMITED,Atkins Global (UK),The Coal Authority,BP International Limited,Qinetiq (United Kingdom),USYD,Knowledge Transfer Network Ltd,Atkins Global,ESP Central (United Kingdom),ITM,Forresters,QuSpin (United States),Cardno,Defence Science & Tech Lab DSTL,Laser Quantum Ltd,Ordnance Survey,M Squared Lasers (United Kingdom),Shield,PA Consulting Group,MTC,Geomatrix,Torr Scientific Ltd,Bridgeporth,Geometrics,Oxford Electromagnetic Solutions Limited,BALFOUR BEATTY RAIL,Airbus Defence and Space,e2v technologies plc,BP (United Kingdom),Severn Trent Group,RSK Group plc,OS,General Lighthouse Authorities,Unitive Design and Analysis Ltd.,General Lighthouse Authorities,J Murphy & Sons Limited,Nemein,Magnetic Shields Limited,Magnetic Shields Limited,Leonardo MW Ltd,British Telecommunications Plc,Royal IHC (UK),Defence Science and Technology Laboratory,Collins Aerospace,BAE Systems (United Kingdom),National Centre for Trauma,Fraunhofer UK Research Ltd,Manufacturing Technology Centre (United Kingdom),Forresters,Atkins (United Kingdom),Cardno,PA Consultancy Services Ltd,RSK Group plc,Northrop Gruman (UK),BALFOUR BEATTY PLC,BT Research,Airbus (United Kingdom),ITM Monitoring,MBDA UK Ltd,The Coal Authority,Qioptiq Ltd,Balfour Beatty (United Kingdom),BP INTERNATIONAL LIMITED,MBDA (United Kingdom),M Squared Lasers (United Kingdom),Royal IHC (UK),Bridgeporth,Ferrovial (United Kingdom),National Centre for Trauma,Added Scientific Ltd,Royal Institute of Navigation,National Physical Laboratory,Airbus Defence and Space,Novanta (United Kingdom),Amey Plc,BAE Systems (Sweden),J Murphy & Sons Limited,Skyrora Limited,RedWave Labs,Nemein,RedWave Labs,Knowledge Transfer Network,AWE,Atomic Weapons Establishment,Collins Aerospace,Geomatrix,Skyrora Limited,Network Rail,Northrop Gruman,Severn Trent (United Kingdom),Teledyne e2v (United Kingdom),Oxford Instruments (United Kingdom),NPL,Re:Cognition Health Limited,Oxford Instruments (United Kingdom),XCAM Ltd (UK),University of Birmingham,The Royal Institute of Navigation,QuSpin,Unitive Design & Analysis Ltd,Jacobs (United States),Shield Therapeutics (United Kingdom),Added Scientific Ltd,Canal and River Trust,Defence Science & Tech Lab DSTL,BT,Canal & River Trust,Network Rail,University of Birmingham,Re:Cognition Health,XCAM LtdFunder: UK Research and Innovation Project Code: EP/T001046/1Funder Contribution: 28,537,600 GBPThe Quantum Technology Hub in Sensors and Timing, a collaboration between 7 universities, NPL, BGS and industry, will bring disruptive new capability to real world applications with high economic and societal impact to the UK. The unique properties of QT sensors will enable radical innovations in Geophysics, Health Care, Timing Applications and Navigation. Our established industry partnerships bring a focus to our research work that enable sensors to be customised to the needs of each application. The total long term economic impact could amount to ~10% of GDP. Gravity sensors can see beneath the surface of the ground to identify buried structures that result in enormous cost to construction projects ranging from rail infrastructure, or sink holes, to brownfield site developments. Similarly they can identify oil resources and magma flows. To be of practical value, gravity sensors must be able to make rapid measurements in challenging environments. Operation from airborne platforms, such as drones, will greatly reduce the cost of deployment and bring inaccessible locations within reach. Mapping brain activity in patients with dementia or schizophrenia, particularly when they are able to move around and perform tasks which stimulate brain function, will help early diagnosis and speed the development of new treatments. Existing brain imaging systems are large and unwieldy; it is particularly difficult to use them with children where a better understanding of epilepsy or brain injury would be of enormous benefit. The systems we will develop will be used initially for patients moving freely in shielded rooms but will eventually be capable of operation in less specialised environments. A new generation of QT based magnetometers, manufactured in the UK, will enable these advances. Precision timing is essential to many systems that we take for granted, including communications and radar. Ultra-precise oscillators, in a field deployable package, will enable radar systems to identify small slow-moving targets such as drones which are currently difficult to detect, bringing greater safety to airports and other sensitive locations. Our world is highly dependent on precise navigation. Although originally developed for defence, our civil infrastructure is critically reliant on GNSS. The ability to fix one's location underground, underwater, inside buildings or when satellite signals are deliberately disrupted can be greatly enhanced using QT sensing. Making Inertial Navigation Systems more robust and using novel techniques such as gravity map matching will alleviate many of these problems. In order to achieve all this, we will drive advanced physics research aimed at small, low power operation and translate it into engineered packages to bring systems of unparalleled capability within the reach of practical applications. Applied research will bring out their ability to deliver huge societal and economic benefit. By continuing to work with a cohort of industry partners, we will help establish a complete ecosystem for QT exploitation, with global reach but firmly rooted in the UK. These goals can only be met by combining the expertise of scientists and engineers across a broad spectrum of capability. The ability to engineer devices that can be deployed in challenging environments requires contributions from physics electronic engineering and materials science. The design of systems that possess the necessary characteristics for specific applications requires understanding from civil and electronic engineering, neuroscience and a wide range of stakeholders in the supply chain. The outputs from a sensor is of little value without the ability to translate raw data into actionable information: data analysis and AI skills are needed here. The research activities of the hub are designed to connect and develop these skills in a coordinated fashion such that the impact on our economy is accelerated.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0ac285ebd9933540a6a7e68064c01802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0ac285ebd9933540a6a7e68064c01802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu